Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach
Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fibe...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2020-08, Vol.27 (12), p.6777-6792 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6792 |
---|---|
container_issue | 12 |
container_start_page | 6777 |
container_title | Cellulose (London) |
container_volume | 27 |
creator | Vonk, N. H. Verschuur, N. A. M. Peerlings, R. H. J. Geers, M. G. D. Hoefnagels, J. P. M. |
description | Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10
-4
and 7 × 10
-4
is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers.
Graphic abstract |
doi_str_mv | 10.1007/s10570-020-03180-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425423069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425423069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8VyfJdpN6k8UvWBBEwVtI28lultrUpAV3wf9utAvePAwDb94H8wg5Z3DJAORVZJBLyICnEUxBtjsgE5ZLninF3w7JBIp5kc6iOCYnMW4AoJCcTcjXsy-H2FPT1rQLWLmI1NXY9s66yvTOt9Rb2q-Rrrer4DP87Ewb93B07apBal2JIV5TQ-3QNJl12NQjSHvf-VUw3XpLKx8CNqOl6brgTbU-JUfWNBHP9ntKXu9uXxYP2fLp_nFxs8yqGUCflaZWHKvC5qhEDUwpK7jMlZxbKblUVYkMcytMzkqDvLY1S78Lzua1QAlGTMnF6JtiPwaMvd74IbQpUvMZz2dcwLxILD6yquBjDGh1F9y7CVvNQP_UrMeadapZ_9asd0kkRlFM5HaF4c_6H9U3wtaDPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423069</pqid></control><display><type>article</type><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><source>SpringerNature Journals</source><creator>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</creator><creatorcontrib>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</creatorcontrib><description>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10
-4
and 7 × 10
-4
is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers.
Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03180-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biodegradability ; Biomedical materials ; Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Continuous fibers ; Eucalyptus ; Glass ; Humidity ; Hydrogels ; Kinematics ; Mechanical properties ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Relative humidity ; Robustness ; Sustainable Development ; Swelling ; Three dimensional printing ; Wetting</subject><ispartof>Cellulose (London), 2020-08, Vol.27 (12), p.6777-6792</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</citedby><cites>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</cites><orcidid>0000-0001-8359-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-020-03180-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-020-03180-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vonk, N. H.</creatorcontrib><creatorcontrib>Verschuur, N. A. M.</creatorcontrib><creatorcontrib>Peerlings, R. H. J.</creatorcontrib><creatorcontrib>Geers, M. G. D.</creatorcontrib><creatorcontrib>Hoefnagels, J. P. M.</creatorcontrib><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10
-4
and 7 × 10
-4
is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers.
Graphic abstract</description><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Continuous fibers</subject><subject>Eucalyptus</subject><subject>Glass</subject><subject>Humidity</subject><subject>Hydrogels</subject><subject>Kinematics</subject><subject>Mechanical properties</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Relative humidity</subject><subject>Robustness</subject><subject>Sustainable Development</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Wetting</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8VyfJdpN6k8UvWBBEwVtI28lultrUpAV3wf9utAvePAwDb94H8wg5Z3DJAORVZJBLyICnEUxBtjsgE5ZLninF3w7JBIp5kc6iOCYnMW4AoJCcTcjXsy-H2FPT1rQLWLmI1NXY9s66yvTOt9Rb2q-Rrrer4DP87Ewb93B07apBal2JIV5TQ-3QNJl12NQjSHvf-VUw3XpLKx8CNqOl6brgTbU-JUfWNBHP9ntKXu9uXxYP2fLp_nFxs8yqGUCflaZWHKvC5qhEDUwpK7jMlZxbKblUVYkMcytMzkqDvLY1S78Lzua1QAlGTMnF6JtiPwaMvd74IbQpUvMZz2dcwLxILD6yquBjDGh1F9y7CVvNQP_UrMeadapZ_9asd0kkRlFM5HaF4c_6H9U3wtaDPQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vonk, N. H.</creator><creator>Verschuur, N. A. M.</creator><creator>Peerlings, R. H. J.</creator><creator>Geers, M. G. D.</creator><creator>Hoefnagels, J. P. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8359-7575</orcidid></search><sort><creationdate>20200801</creationdate><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><author>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Continuous fibers</topic><topic>Eucalyptus</topic><topic>Glass</topic><topic>Humidity</topic><topic>Hydrogels</topic><topic>Kinematics</topic><topic>Mechanical properties</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Relative humidity</topic><topic>Robustness</topic><topic>Sustainable Development</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vonk, N. H.</creatorcontrib><creatorcontrib>Verschuur, N. A. M.</creatorcontrib><creatorcontrib>Peerlings, R. H. J.</creatorcontrib><creatorcontrib>Geers, M. G. D.</creatorcontrib><creatorcontrib>Hoefnagels, J. P. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vonk, N. H.</au><au>Verschuur, N. A. M.</au><au>Peerlings, R. H. J.</au><au>Geers, M. G. D.</au><au>Hoefnagels, J. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>27</volume><issue>12</issue><spage>6777</spage><epage>6792</epage><pages>6777-6792</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10
-4
and 7 × 10
-4
is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers.
Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03180-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8359-7575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2020-08, Vol.27 (12), p.6777-6792 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2425423069 |
source | SpringerNature Journals |
subjects | Biodegradability Biomedical materials Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Composites Continuous fibers Eucalyptus Glass Humidity Hydrogels Kinematics Mechanical properties Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Relative humidity Robustness Sustainable Development Swelling Three dimensional printing Wetting |
title | Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20precise%20identification%20of%20the%20hygro-expansion%20of%20single%20fibers:%20a%20full-field%20fiber%20topography%20correlation%20approach&rft.jtitle=Cellulose%20(London)&rft.au=Vonk,%20N.%20H.&rft.date=2020-08-01&rft.volume=27&rft.issue=12&rft.spage=6777&rft.epage=6792&rft.pages=6777-6792&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03180-z&rft_dat=%3Cproquest_cross%3E2425423069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425423069&rft_id=info:pmid/&rfr_iscdi=true |