Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach

Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fibe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2020-08, Vol.27 (12), p.6777-6792
Hauptverfasser: Vonk, N. H., Verschuur, N. A. M., Peerlings, R. H. J., Geers, M. G. D., Hoefnagels, J. P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6792
container_issue 12
container_start_page 6777
container_title Cellulose (London)
container_volume 27
creator Vonk, N. H.
Verschuur, N. A. M.
Peerlings, R. H. J.
Geers, M. G. D.
Hoefnagels, J. P. M.
description Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10 -4 and 7 × 10 -4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract
doi_str_mv 10.1007/s10570-020-03180-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2425423069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425423069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8VyfJdpN6k8UvWBBEwVtI28lultrUpAV3wf9utAvePAwDb94H8wg5Z3DJAORVZJBLyICnEUxBtjsgE5ZLninF3w7JBIp5kc6iOCYnMW4AoJCcTcjXsy-H2FPT1rQLWLmI1NXY9s66yvTOt9Rb2q-Rrrer4DP87Ewb93B07apBal2JIV5TQ-3QNJl12NQjSHvf-VUw3XpLKx8CNqOl6brgTbU-JUfWNBHP9ntKXu9uXxYP2fLp_nFxs8yqGUCflaZWHKvC5qhEDUwpK7jMlZxbKblUVYkMcytMzkqDvLY1S78Lzua1QAlGTMnF6JtiPwaMvd74IbQpUvMZz2dcwLxILD6yquBjDGh1F9y7CVvNQP_UrMeadapZ_9asd0kkRlFM5HaF4c_6H9U3wtaDPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423069</pqid></control><display><type>article</type><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><source>SpringerNature Journals</source><creator>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</creator><creatorcontrib>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</creatorcontrib><description>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10 -4 and 7 × 10 -4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-020-03180-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biodegradability ; Biomedical materials ; Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Continuous fibers ; Eucalyptus ; Glass ; Humidity ; Hydrogels ; Kinematics ; Mechanical properties ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Relative humidity ; Robustness ; Sustainable Development ; Swelling ; Three dimensional printing ; Wetting</subject><ispartof>Cellulose (London), 2020-08, Vol.27 (12), p.6777-6792</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</citedby><cites>FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</cites><orcidid>0000-0001-8359-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-020-03180-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-020-03180-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vonk, N. H.</creatorcontrib><creatorcontrib>Verschuur, N. A. M.</creatorcontrib><creatorcontrib>Peerlings, R. H. J.</creatorcontrib><creatorcontrib>Geers, M. G. D.</creatorcontrib><creatorcontrib>Hoefnagels, J. P. M.</creatorcontrib><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10 -4 and 7 × 10 -4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract</description><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Continuous fibers</subject><subject>Eucalyptus</subject><subject>Glass</subject><subject>Humidity</subject><subject>Hydrogels</subject><subject>Kinematics</subject><subject>Mechanical properties</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Relative humidity</subject><subject>Robustness</subject><subject>Sustainable Development</subject><subject>Swelling</subject><subject>Three dimensional printing</subject><subject>Wetting</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8VyfJdpN6k8UvWBBEwVtI28lultrUpAV3wf9utAvePAwDb94H8wg5Z3DJAORVZJBLyICnEUxBtjsgE5ZLninF3w7JBIp5kc6iOCYnMW4AoJCcTcjXsy-H2FPT1rQLWLmI1NXY9s66yvTOt9Rb2q-Rrrer4DP87Ewb93B07apBal2JIV5TQ-3QNJl12NQjSHvf-VUw3XpLKx8CNqOl6brgTbU-JUfWNBHP9ntKXu9uXxYP2fLp_nFxs8yqGUCflaZWHKvC5qhEDUwpK7jMlZxbKblUVYkMcytMzkqDvLY1S78Lzua1QAlGTMnF6JtiPwaMvd74IbQpUvMZz2dcwLxILD6yquBjDGh1F9y7CVvNQP_UrMeadapZ_9asd0kkRlFM5HaF4c_6H9U3wtaDPQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vonk, N. H.</creator><creator>Verschuur, N. A. M.</creator><creator>Peerlings, R. H. J.</creator><creator>Geers, M. G. D.</creator><creator>Hoefnagels, J. P. M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8359-7575</orcidid></search><sort><creationdate>20200801</creationdate><title>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</title><author>Vonk, N. H. ; Verschuur, N. A. M. ; Peerlings, R. H. J. ; Geers, M. G. D. ; Hoefnagels, J. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-bad82ec9f5e83d0188f3275876f77278cbe1e5f3a51bae2dfd11573216d3e70a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Continuous fibers</topic><topic>Eucalyptus</topic><topic>Glass</topic><topic>Humidity</topic><topic>Hydrogels</topic><topic>Kinematics</topic><topic>Mechanical properties</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Relative humidity</topic><topic>Robustness</topic><topic>Sustainable Development</topic><topic>Swelling</topic><topic>Three dimensional printing</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vonk, N. H.</creatorcontrib><creatorcontrib>Verschuur, N. A. M.</creatorcontrib><creatorcontrib>Peerlings, R. H. J.</creatorcontrib><creatorcontrib>Geers, M. G. D.</creatorcontrib><creatorcontrib>Hoefnagels, J. P. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vonk, N. H.</au><au>Verschuur, N. A. M.</au><au>Peerlings, R. H. J.</au><au>Geers, M. G. D.</au><au>Hoefnagels, J. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>27</volume><issue>12</issue><spage>6777</spage><epage>6792</epage><pages>6777-6792</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10 -4 and 7 × 10 -4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-020-03180-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8359-7575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2020-08, Vol.27 (12), p.6777-6792
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2425423069
source SpringerNature Journals
subjects Biodegradability
Biomedical materials
Bioorganic Chemistry
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Continuous fibers
Eucalyptus
Glass
Humidity
Hydrogels
Kinematics
Mechanical properties
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Relative humidity
Robustness
Sustainable Development
Swelling
Three dimensional printing
Wetting
title Robust and precise identification of the hygro-expansion of single fibers: a full-field fiber topography correlation approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20and%20precise%20identification%20of%20the%20hygro-expansion%20of%20single%20fibers:%20a%20full-field%20fiber%20topography%20correlation%20approach&rft.jtitle=Cellulose%20(London)&rft.au=Vonk,%20N.%20H.&rft.date=2020-08-01&rft.volume=27&rft.issue=12&rft.spage=6777&rft.epage=6792&rft.pages=6777-6792&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-020-03180-z&rft_dat=%3Cproquest_cross%3E2425423069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425423069&rft_id=info:pmid/&rfr_iscdi=true