Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates

The electrocatalytic transformation of carbon dioxide to higher value hydrocarbons offers opportunities for large-scale, long-term renewable energy storage and lessens carbon emissions. The fabrication of an efficient electrocatalyst with high selectivity for multicarbon (C2) products remains a topi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2020-01, Vol.10 (14), p.4562-4570
Hauptverfasser: Ajmal, Saira, Yang, Yang, Muhammad Ali Tahir, Li, Kejian, Aziz-Ur-Rahim Bacha, Nabi, Iqra, Liu, Yangyang, Wang, Tao, Zhang, Liwu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4570
container_issue 14
container_start_page 4562
container_title Catalysis science & technology
container_volume 10
creator Ajmal, Saira
Yang, Yang
Muhammad Ali Tahir
Li, Kejian
Aziz-Ur-Rahim Bacha
Nabi, Iqra
Liu, Yangyang
Wang, Tao
Zhang, Liwu
description The electrocatalytic transformation of carbon dioxide to higher value hydrocarbons offers opportunities for large-scale, long-term renewable energy storage and lessens carbon emissions. The fabrication of an efficient electrocatalyst with high selectivity for multicarbon (C2) products remains a topic of continuous interest. Here, we report highly dense copper nanoplate catalysts that are highly selective towards C2 product formation (C2H4 and C2H6) with an average partial current density of −9.6 mA cm−2, which is nearly 20 times higher than that of Cu-planar catalysts (−0.5 mA cm−2). The Cu-nanoplate catalyst exhibits 24 times increase in faradaic efficiency (FEC2) compared with the Cu-planar catalyst. The reaction mechanism is studied by in situ Raman and density functional theory (DFT) calculations. The superior selectivity of the Cu-nanoplate catalyst for C2 products originates from the higher surface roughness and abundance of Cu (200) facets. The finding is an important development towards the fabrication of efficient catalysts with exclusively higher selectivity for multicarbon products.
doi_str_mv 10.1039/d0cy00487a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2425002435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425002435</sourcerecordid><originalsourceid>FETCH-LOGICAL-g655-293d8629446ad06371aba84ff98f5d681ba14b92964bc9c4008cd3016180a0643</originalsourceid><addsrcrecordid>eNo9Ts1KxDAYDKLgsu7FJwh4rn5JvqbJUYu6wsJe9uJpSZP0Z6lJbVph396K4lxmmIGZIeSWwT0DoR8c2DMAqsJckBUHxAwLyS7_dS6uySalEyxAzUDxFXl_ijFNXWhoyekwRjfbKdEuUN97O43Rtv6js6an5Z7T0f_EXQw0fvmRtl3T9mfqfEie2jgMixdMiENvJp9uyFVt-uQ3f7wmh5fnQ7nNdvvXt_JxlzUyzzOuhVOSa0RpHEhRMFMZhXWtVZ07qVhlGFaaa4mV1RYBlHUCmGQKDEgUa3L3W7uc_5x9mo6nOI9hWTxy5DkAR5GLb0aNUvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425002435</pqid></control><display><type>article</type><title>Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates</title><source>Royal Society Of Chemistry Journals</source><creator>Ajmal, Saira ; Yang, Yang ; Muhammad Ali Tahir ; Li, Kejian ; Aziz-Ur-Rahim Bacha ; Nabi, Iqra ; Liu, Yangyang ; Wang, Tao ; Zhang, Liwu</creator><creatorcontrib>Ajmal, Saira ; Yang, Yang ; Muhammad Ali Tahir ; Li, Kejian ; Aziz-Ur-Rahim Bacha ; Nabi, Iqra ; Liu, Yangyang ; Wang, Tao ; Zhang, Liwu</creatorcontrib><description>The electrocatalytic transformation of carbon dioxide to higher value hydrocarbons offers opportunities for large-scale, long-term renewable energy storage and lessens carbon emissions. The fabrication of an efficient electrocatalyst with high selectivity for multicarbon (C2) products remains a topic of continuous interest. Here, we report highly dense copper nanoplate catalysts that are highly selective towards C2 product formation (C2H4 and C2H6) with an average partial current density of −9.6 mA cm−2, which is nearly 20 times higher than that of Cu-planar catalysts (−0.5 mA cm−2). The Cu-nanoplate catalyst exhibits 24 times increase in faradaic efficiency (FEC2) compared with the Cu-planar catalyst. The reaction mechanism is studied by in situ Raman and density functional theory (DFT) calculations. The superior selectivity of the Cu-nanoplate catalyst for C2 products originates from the higher surface roughness and abundance of Cu (200) facets. The finding is an important development towards the fabrication of efficient catalysts with exclusively higher selectivity for multicarbon products.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d0cy00487a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Catalysts ; Copper ; Density functional theory ; Electrocatalysts ; Energy storage ; Reaction mechanisms ; Selectivity ; Surface roughness</subject><ispartof>Catalysis science &amp; technology, 2020-01, Vol.10 (14), p.4562-4570</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ajmal, Saira</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Muhammad Ali Tahir</creatorcontrib><creatorcontrib>Li, Kejian</creatorcontrib><creatorcontrib>Aziz-Ur-Rahim Bacha</creatorcontrib><creatorcontrib>Nabi, Iqra</creatorcontrib><creatorcontrib>Liu, Yangyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhang, Liwu</creatorcontrib><title>Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates</title><title>Catalysis science &amp; technology</title><description>The electrocatalytic transformation of carbon dioxide to higher value hydrocarbons offers opportunities for large-scale, long-term renewable energy storage and lessens carbon emissions. The fabrication of an efficient electrocatalyst with high selectivity for multicarbon (C2) products remains a topic of continuous interest. Here, we report highly dense copper nanoplate catalysts that are highly selective towards C2 product formation (C2H4 and C2H6) with an average partial current density of −9.6 mA cm−2, which is nearly 20 times higher than that of Cu-planar catalysts (−0.5 mA cm−2). The Cu-nanoplate catalyst exhibits 24 times increase in faradaic efficiency (FEC2) compared with the Cu-planar catalyst. The reaction mechanism is studied by in situ Raman and density functional theory (DFT) calculations. The superior selectivity of the Cu-nanoplate catalyst for C2 products originates from the higher surface roughness and abundance of Cu (200) facets. The finding is an important development towards the fabrication of efficient catalysts with exclusively higher selectivity for multicarbon products.</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Reaction mechanisms</subject><subject>Selectivity</subject><subject>Surface roughness</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9Ts1KxDAYDKLgsu7FJwh4rn5JvqbJUYu6wsJe9uJpSZP0Z6lJbVph396K4lxmmIGZIeSWwT0DoR8c2DMAqsJckBUHxAwLyS7_dS6uySalEyxAzUDxFXl_ijFNXWhoyekwRjfbKdEuUN97O43Rtv6js6an5Z7T0f_EXQw0fvmRtl3T9mfqfEie2jgMixdMiENvJp9uyFVt-uQ3f7wmh5fnQ7nNdvvXt_JxlzUyzzOuhVOSa0RpHEhRMFMZhXWtVZ07qVhlGFaaa4mV1RYBlHUCmGQKDEgUa3L3W7uc_5x9mo6nOI9hWTxy5DkAR5GLb0aNUvg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ajmal, Saira</creator><creator>Yang, Yang</creator><creator>Muhammad Ali Tahir</creator><creator>Li, Kejian</creator><creator>Aziz-Ur-Rahim Bacha</creator><creator>Nabi, Iqra</creator><creator>Liu, Yangyang</creator><creator>Wang, Tao</creator><creator>Zhang, Liwu</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200101</creationdate><title>Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates</title><author>Ajmal, Saira ; Yang, Yang ; Muhammad Ali Tahir ; Li, Kejian ; Aziz-Ur-Rahim Bacha ; Nabi, Iqra ; Liu, Yangyang ; Wang, Tao ; Zhang, Liwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g655-293d8629446ad06371aba84ff98f5d681ba14b92964bc9c4008cd3016180a0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Reaction mechanisms</topic><topic>Selectivity</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajmal, Saira</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Muhammad Ali Tahir</creatorcontrib><creatorcontrib>Li, Kejian</creatorcontrib><creatorcontrib>Aziz-Ur-Rahim Bacha</creatorcontrib><creatorcontrib>Nabi, Iqra</creatorcontrib><creatorcontrib>Liu, Yangyang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Zhang, Liwu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajmal, Saira</au><au>Yang, Yang</au><au>Muhammad Ali Tahir</au><au>Li, Kejian</au><au>Aziz-Ur-Rahim Bacha</au><au>Nabi, Iqra</au><au>Liu, Yangyang</au><au>Wang, Tao</au><au>Zhang, Liwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>14</issue><spage>4562</spage><epage>4570</epage><pages>4562-4570</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The electrocatalytic transformation of carbon dioxide to higher value hydrocarbons offers opportunities for large-scale, long-term renewable energy storage and lessens carbon emissions. The fabrication of an efficient electrocatalyst with high selectivity for multicarbon (C2) products remains a topic of continuous interest. Here, we report highly dense copper nanoplate catalysts that are highly selective towards C2 product formation (C2H4 and C2H6) with an average partial current density of −9.6 mA cm−2, which is nearly 20 times higher than that of Cu-planar catalysts (−0.5 mA cm−2). The Cu-nanoplate catalyst exhibits 24 times increase in faradaic efficiency (FEC2) compared with the Cu-planar catalyst. The reaction mechanism is studied by in situ Raman and density functional theory (DFT) calculations. The superior selectivity of the Cu-nanoplate catalyst for C2 products originates from the higher surface roughness and abundance of Cu (200) facets. The finding is an important development towards the fabrication of efficient catalysts with exclusively higher selectivity for multicarbon products.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0cy00487a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2020-01, Vol.10 (14), p.4562-4570
issn 2044-4753
2044-4761
language eng
recordid cdi_proquest_journals_2425002435
source Royal Society Of Chemistry Journals
subjects Carbon dioxide
Catalysts
Copper
Density functional theory
Electrocatalysts
Energy storage
Reaction mechanisms
Selectivity
Surface roughness
title Boosting C2 products in electrochemical CO2 reduction over highly dense copper nanoplates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20C2%20products%20in%20electrochemical%20CO2%20reduction%20over%20highly%20dense%20copper%20nanoplates&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Ajmal,%20Saira&rft.date=2020-01-01&rft.volume=10&rft.issue=14&rft.spage=4562&rft.epage=4570&rft.pages=4562-4570&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d0cy00487a&rft_dat=%3Cproquest%3E2425002435%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425002435&rft_id=info:pmid/&rfr_iscdi=true