A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation

To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2020, Vol.2020 (2020), p.1-27
Hauptverfasser: Qi, Shouliang, Li, Hong, Li, Zihan, Sun, Changhao, Zhao, Xin, Kulwa, Frank, Li, Chen, Zhang, Jinghua, Jiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 2020
container_start_page 1
container_title BioMed research international
container_volume 2020
creator Qi, Shouliang
Li, Hong
Li, Zihan
Sun, Changhao
Zhao, Xin
Kulwa, Frank
Li, Chen
Zhang, Jinghua
Jiang, Tao
description To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.
doi_str_mv 10.1155/2020/4621403
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_proquest_journals_2424878697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639880022</galeid><sourcerecordid>A639880022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotXQHWsUiQ0ShPoV29kgjUadtlJbxGttOZnr1CWxWztpxb_HYYYpsMIbW7qfzvU5B6GXBL8npKqOKab4mAtKOGZP0CFlhJeCcPJ0_2bsAB2ldIPzUUTgWjxHB4xKyhWmh-jTsric-tGl1vRQrK6uytXndbGOZoCHEL8XNsTixN-7GPwAfjR9cenaGELsjHdpKM4H00HxBbpf09EF_wI9s6ZPcLS7F-jb-uTr6qy8-Hh6vlpelC2v67EEJmXLTFMbsuEtVMxasACSNZgaWyvMCMa8Ik1DcNVik51yabNda0WtJGYL9GGrezs1A2zavD-aXt9GN5j4Qwfj9N8T7651F-61ZEKQWmWBNzuBGO4mSKMecgzQ98ZDmJKmnCpOxBzhAr3-B70JU_TZ3kxxJZWo5SPV5Sy18zbkve0sqpeC1UphTGmm3m2pHGNKEez-ywTruVQ9l6p3pWb81Z829_DvCjPwdgtcO78xD-4_5SAzYM0jTRjHmfgJiM-w8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424878697</pqid></control><display><type>article</type><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao</creator><contributor>Zou, Quan</contributor><creatorcontrib>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao ; Zou, Quan</creatorcontrib><description>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/4621403</identifier><identifier>PMID: 32724802</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial neural networks ; Bacteria - isolation &amp; purification ; Biomedical research ; Classification ; Conditional random fields ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging, Three-Dimensional - methods ; Machine learning ; Methods ; Microorganisms ; Morphology ; Neural networks ; Researchers</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-27</ispartof><rights>Copyright © 2020 Jinghua Zhang et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Jinghua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Jinghua Zhang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</citedby><cites>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</cites><orcidid>0000-0003-0977-1939 ; 0000-0003-1545-8885 ; 0000-0003-3303-4752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366198/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366198/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32724802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zou, Quan</contributor><creatorcontrib>Qi, Shouliang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Sun, Changhao</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Kulwa, Frank</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Jinghua</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</description><subject>Artificial neural networks</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Conditional random fields</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Researchers</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtv1DAUhS0EotXQHWsUiQ0ShPoV29kgjUadtlJbxGttOZnr1CWxWztpxb_HYYYpsMIbW7qfzvU5B6GXBL8npKqOKab4mAtKOGZP0CFlhJeCcPJ0_2bsAB2ldIPzUUTgWjxHB4xKyhWmh-jTsric-tGl1vRQrK6uytXndbGOZoCHEL8XNsTixN-7GPwAfjR9cenaGELsjHdpKM4H00HxBbpf09EF_wI9s6ZPcLS7F-jb-uTr6qy8-Hh6vlpelC2v67EEJmXLTFMbsuEtVMxasACSNZgaWyvMCMa8Ik1DcNVik51yabNda0WtJGYL9GGrezs1A2zavD-aXt9GN5j4Qwfj9N8T7651F-61ZEKQWmWBNzuBGO4mSKMecgzQ98ZDmJKmnCpOxBzhAr3-B70JU_TZ3kxxJZWo5SPV5Sy18zbkve0sqpeC1UphTGmm3m2pHGNKEez-ywTruVQ9l6p3pWb81Z829_DvCjPwdgtcO78xD-4_5SAzYM0jTRjHmfgJiM-w8g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Qi, Shouliang</creator><creator>Li, Hong</creator><creator>Li, Zihan</creator><creator>Sun, Changhao</creator><creator>Zhao, Xin</creator><creator>Kulwa, Frank</creator><creator>Li, Chen</creator><creator>Zhang, Jinghua</creator><creator>Jiang, Tao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0977-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-8885</orcidid><orcidid>https://orcid.org/0000-0003-3303-4752</orcidid></search><sort><creationdate>2020</creationdate><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><author>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Conditional random fields</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Shouliang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Sun, Changhao</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Kulwa, Frank</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Jinghua</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Shouliang</au><au>Li, Hong</au><au>Li, Zihan</au><au>Sun, Changhao</au><au>Zhao, Xin</au><au>Kulwa, Frank</au><au>Li, Chen</au><au>Zhang, Jinghua</au><au>Jiang, Tao</au><au>Zou, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32724802</pmid><doi>10.1155/2020/4621403</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0977-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-8885</orcidid><orcidid>https://orcid.org/0000-0003-3303-4752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2020, Vol.2020 (2020), p.1-27
issn 2314-6133
2314-6141
language eng
recordid cdi_proquest_journals_2424878697
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Artificial neural networks
Bacteria - isolation & purification
Biomedical research
Classification
Conditional random fields
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging, Three-Dimensional - methods
Machine learning
Methods
Microorganisms
Morphology
Neural networks
Researchers
title A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T13%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20CNN-CRF%20Framework%20for%20Environmental%20Microorganism%20Image%20Segmentation&rft.jtitle=BioMed%20research%20international&rft.au=Qi,%20Shouliang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/4621403&rft_dat=%3Cgale_pubme%3EA639880022%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424878697&rft_id=info:pmid/32724802&rft_galeid=A639880022&rfr_iscdi=true