A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation
To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Con...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2020, Vol.2020 (2020), p.1-27 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2020 |
creator | Qi, Shouliang Li, Hong Li, Zihan Sun, Changhao Zhao, Xin Kulwa, Frank Li, Chen Zhang, Jinghua Jiang, Tao |
description | To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field. |
doi_str_mv | 10.1155/2020/4621403 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_proquest_journals_2424878697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639880022</galeid><sourcerecordid>A639880022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EotXQHWsUiQ0ShPoV29kgjUadtlJbxGttOZnr1CWxWztpxb_HYYYpsMIbW7qfzvU5B6GXBL8npKqOKab4mAtKOGZP0CFlhJeCcPJ0_2bsAB2ldIPzUUTgWjxHB4xKyhWmh-jTsric-tGl1vRQrK6uytXndbGOZoCHEL8XNsTixN-7GPwAfjR9cenaGELsjHdpKM4H00HxBbpf09EF_wI9s6ZPcLS7F-jb-uTr6qy8-Hh6vlpelC2v67EEJmXLTFMbsuEtVMxasACSNZgaWyvMCMa8Ik1DcNVik51yabNda0WtJGYL9GGrezs1A2zavD-aXt9GN5j4Qwfj9N8T7651F-61ZEKQWmWBNzuBGO4mSKMecgzQ98ZDmJKmnCpOxBzhAr3-B70JU_TZ3kxxJZWo5SPV5Sy18zbkve0sqpeC1UphTGmm3m2pHGNKEez-ywTruVQ9l6p3pWb81Z829_DvCjPwdgtcO78xD-4_5SAzYM0jTRjHmfgJiM-w8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424878697</pqid></control><display><type>article</type><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao</creator><contributor>Zou, Quan</contributor><creatorcontrib>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao ; Zou, Quan</creatorcontrib><description>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2020/4621403</identifier><identifier>PMID: 32724802</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial neural networks ; Bacteria - isolation & purification ; Biomedical research ; Classification ; Conditional random fields ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging, Three-Dimensional - methods ; Machine learning ; Methods ; Microorganisms ; Morphology ; Neural networks ; Researchers</subject><ispartof>BioMed research international, 2020, Vol.2020 (2020), p.1-27</ispartof><rights>Copyright © 2020 Jinghua Zhang et al.</rights><rights>COPYRIGHT 2020 John Wiley & Sons, Inc.</rights><rights>Copyright © 2020 Jinghua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Jinghua Zhang et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</citedby><cites>FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</cites><orcidid>0000-0003-0977-1939 ; 0000-0003-1545-8885 ; 0000-0003-3303-4752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366198/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366198/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32724802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zou, Quan</contributor><creatorcontrib>Qi, Shouliang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Sun, Changhao</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Kulwa, Frank</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Jinghua</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</description><subject>Artificial neural networks</subject><subject>Bacteria - isolation & purification</subject><subject>Biomedical research</subject><subject>Classification</subject><subject>Conditional random fields</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Researchers</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtv1DAUhS0EotXQHWsUiQ0ShPoV29kgjUadtlJbxGttOZnr1CWxWztpxb_HYYYpsMIbW7qfzvU5B6GXBL8npKqOKab4mAtKOGZP0CFlhJeCcPJ0_2bsAB2ldIPzUUTgWjxHB4xKyhWmh-jTsric-tGl1vRQrK6uytXndbGOZoCHEL8XNsTixN-7GPwAfjR9cenaGELsjHdpKM4H00HxBbpf09EF_wI9s6ZPcLS7F-jb-uTr6qy8-Hh6vlpelC2v67EEJmXLTFMbsuEtVMxasACSNZgaWyvMCMa8Ik1DcNVik51yabNda0WtJGYL9GGrezs1A2zavD-aXt9GN5j4Qwfj9N8T7651F-61ZEKQWmWBNzuBGO4mSKMecgzQ98ZDmJKmnCpOxBzhAr3-B70JU_TZ3kxxJZWo5SPV5Sy18zbkve0sqpeC1UphTGmm3m2pHGNKEez-ywTruVQ9l6p3pWb81Z829_DvCjPwdgtcO78xD-4_5SAzYM0jTRjHmfgJiM-w8g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Qi, Shouliang</creator><creator>Li, Hong</creator><creator>Li, Zihan</creator><creator>Sun, Changhao</creator><creator>Zhao, Xin</creator><creator>Kulwa, Frank</creator><creator>Li, Chen</creator><creator>Zhang, Jinghua</creator><creator>Jiang, Tao</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0977-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-8885</orcidid><orcidid>https://orcid.org/0000-0003-3303-4752</orcidid></search><sort><creationdate>2020</creationdate><title>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</title><author>Qi, Shouliang ; Li, Hong ; Li, Zihan ; Sun, Changhao ; Zhao, Xin ; Kulwa, Frank ; Li, Chen ; Zhang, Jinghua ; Jiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-e377c3ab9a1d4ce53ffefee73b02af9803100451bb105c0a20247f020ff698703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bacteria - isolation & purification</topic><topic>Biomedical research</topic><topic>Classification</topic><topic>Conditional random fields</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Researchers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Shouliang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Li, Zihan</creatorcontrib><creatorcontrib>Sun, Changhao</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Kulwa, Frank</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Zhang, Jinghua</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Shouliang</au><au>Li, Hong</au><au>Li, Zihan</au><au>Sun, Changhao</au><au>Zhao, Xin</au><au>Kulwa, Frank</au><au>Li, Chen</au><au>Zhang, Jinghua</au><au>Jiang, Tao</au><au>Zou, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>32724802</pmid><doi>10.1155/2020/4621403</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0977-1939</orcidid><orcidid>https://orcid.org/0000-0003-1545-8885</orcidid><orcidid>https://orcid.org/0000-0003-3303-4752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2020, Vol.2020 (2020), p.1-27 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_proquest_journals_2424878697 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Artificial neural networks Bacteria - isolation & purification Biomedical research Classification Conditional random fields Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging, Three-Dimensional - methods Machine learning Methods Microorganisms Morphology Neural networks Researchers |
title | A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T13%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20CNN-CRF%20Framework%20for%20Environmental%20Microorganism%20Image%20Segmentation&rft.jtitle=BioMed%20research%20international&rft.au=Qi,%20Shouliang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2020/4621403&rft_dat=%3Cgale_pubme%3EA639880022%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424878697&rft_id=info:pmid/32724802&rft_galeid=A639880022&rfr_iscdi=true |