Uniaxial and Biaxial Response of Anisotropic Polypropylene

The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2020-07, Vol.29 (4), p.n/a
Hauptverfasser: Kershah, Tarek, Anderson, Patrick D., van Breemen, Lambèrt C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Macromolecular theory and simulations
container_volume 29
creator Kershah, Tarek
Anderson, Patrick D.
van Breemen, Lambèrt C. A.
description The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases. This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.
doi_str_mv 10.1002/mats.202000018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424852566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424852566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</originalsourceid><addsrcrecordid>eNqFkM1Lw0AUxBdRsFavngOeE_cr2V1vsVgVKoq252WTvIWUNBuzKZr_3i0pevRdZg6_eQOD0DXBCcGY3u7M4BOKKQ5H5AmakZSSmCmiToPHlMaEcX6OLrzfBkQpQWfobtPW5rs2TWTaKro_-nfwnWs9RM5GeVt7N_Suq8vozTVjF-zYQAuX6MyaxsPVUedos3xYL57i1evj8yJfxSVTXMZcgrHAjCp4SkqWEVtkxlqCGUgBkJWWMg4KEzCGFUxklbIGuFQAQlRSsDm6mf6G5s89-EFv3b5vQ6WmnHKZ0jTLApVMVNk773uwuuvrnelHTbA-7KMP--jffUJATYGvuoHxH1q_5OuPv-wPIpFqEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424852566</pqid></control><display><type>article</type><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><source>Access via Wiley Online Library</source><creator>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</creator><creatorcontrib>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</creatorcontrib><description>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases. This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.202000018</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; biaxial ; Biaxial loads ; Computer simulation ; Constitutive models ; Constitutive relationships ; Deformation ; Finite element method ; finite element modeling ; Mathematical models ; Polymers ; Polypropylene ; simulations ; Three dimensional models ; Yield criteria</subject><ispartof>Macromolecular theory and simulations, 2020-07, Vol.29 (4), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</citedby><cites>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</cites><orcidid>0000-0001-9157-0858 ; 0000-0002-0610-1908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.202000018$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.202000018$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kershah, Tarek</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>van Breemen, Lambèrt C. A.</creatorcontrib><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><title>Macromolecular theory and simulations</title><description>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases. This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</description><subject>Anisotropy</subject><subject>biaxial</subject><subject>Biaxial loads</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>finite element modeling</subject><subject>Mathematical models</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>simulations</subject><subject>Three dimensional models</subject><subject>Yield criteria</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1Lw0AUxBdRsFavngOeE_cr2V1vsVgVKoq252WTvIWUNBuzKZr_3i0pevRdZg6_eQOD0DXBCcGY3u7M4BOKKQ5H5AmakZSSmCmiToPHlMaEcX6OLrzfBkQpQWfobtPW5rs2TWTaKro_-nfwnWs9RM5GeVt7N_Suq8vozTVjF-zYQAuX6MyaxsPVUedos3xYL57i1evj8yJfxSVTXMZcgrHAjCp4SkqWEVtkxlqCGUgBkJWWMg4KEzCGFUxklbIGuFQAQlRSsDm6mf6G5s89-EFv3b5vQ6WmnHKZ0jTLApVMVNk773uwuuvrnelHTbA-7KMP--jffUJATYGvuoHxH1q_5OuPv-wPIpFqEg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Kershah, Tarek</creator><creator>Anderson, Patrick D.</creator><creator>van Breemen, Lambèrt C. A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9157-0858</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid></search><sort><creationdate>202007</creationdate><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><author>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>biaxial</topic><topic>Biaxial loads</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>finite element modeling</topic><topic>Mathematical models</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>simulations</topic><topic>Three dimensional models</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kershah, Tarek</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>van Breemen, Lambèrt C. A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kershah, Tarek</au><au>Anderson, Patrick D.</au><au>van Breemen, Lambèrt C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniaxial and Biaxial Response of Anisotropic Polypropylene</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2020-07</date><risdate>2020</risdate><volume>29</volume><issue>4</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases. This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.202000018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9157-0858</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2020-07, Vol.29 (4), p.n/a
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_journals_2424852566
source Access via Wiley Online Library
subjects Anisotropy
biaxial
Biaxial loads
Computer simulation
Constitutive models
Constitutive relationships
Deformation
Finite element method
finite element modeling
Mathematical models
Polymers
Polypropylene
simulations
Three dimensional models
Yield criteria
title Uniaxial and Biaxial Response of Anisotropic Polypropylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniaxial%20and%20Biaxial%20Response%20of%20Anisotropic%20Polypropylene&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Kershah,%20Tarek&rft.date=2020-07&rft.volume=29&rft.issue=4&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.202000018&rft_dat=%3Cproquest_cross%3E2424852566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424852566&rft_id=info:pmid/&rfr_iscdi=true