Uniaxial and Biaxial Response of Anisotropic Polypropylene
The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework t...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 2020-07, Vol.29 (4), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Macromolecular theory and simulations |
container_volume | 29 |
creator | Kershah, Tarek Anderson, Patrick D. van Breemen, Lambèrt C. A. |
description | The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases.
This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing. |
doi_str_mv | 10.1002/mats.202000018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424852566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424852566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</originalsourceid><addsrcrecordid>eNqFkM1Lw0AUxBdRsFavngOeE_cr2V1vsVgVKoq252WTvIWUNBuzKZr_3i0pevRdZg6_eQOD0DXBCcGY3u7M4BOKKQ5H5AmakZSSmCmiToPHlMaEcX6OLrzfBkQpQWfobtPW5rs2TWTaKro_-nfwnWs9RM5GeVt7N_Suq8vozTVjF-zYQAuX6MyaxsPVUedos3xYL57i1evj8yJfxSVTXMZcgrHAjCp4SkqWEVtkxlqCGUgBkJWWMg4KEzCGFUxklbIGuFQAQlRSsDm6mf6G5s89-EFv3b5vQ6WmnHKZ0jTLApVMVNk773uwuuvrnelHTbA-7KMP--jffUJATYGvuoHxH1q_5OuPv-wPIpFqEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424852566</pqid></control><display><type>article</type><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><source>Access via Wiley Online Library</source><creator>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</creator><creatorcontrib>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</creatorcontrib><description>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases.
This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.202000018</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropy ; biaxial ; Biaxial loads ; Computer simulation ; Constitutive models ; Constitutive relationships ; Deformation ; Finite element method ; finite element modeling ; Mathematical models ; Polymers ; Polypropylene ; simulations ; Three dimensional models ; Yield criteria</subject><ispartof>Macromolecular theory and simulations, 2020-07, Vol.29 (4), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</citedby><cites>FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</cites><orcidid>0000-0001-9157-0858 ; 0000-0002-0610-1908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.202000018$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.202000018$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kershah, Tarek</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>van Breemen, Lambèrt C. A.</creatorcontrib><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><title>Macromolecular theory and simulations</title><description>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases.
This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</description><subject>Anisotropy</subject><subject>biaxial</subject><subject>Biaxial loads</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>finite element modeling</subject><subject>Mathematical models</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>simulations</subject><subject>Three dimensional models</subject><subject>Yield criteria</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1Lw0AUxBdRsFavngOeE_cr2V1vsVgVKoq252WTvIWUNBuzKZr_3i0pevRdZg6_eQOD0DXBCcGY3u7M4BOKKQ5H5AmakZSSmCmiToPHlMaEcX6OLrzfBkQpQWfobtPW5rs2TWTaKro_-nfwnWs9RM5GeVt7N_Suq8vozTVjF-zYQAuX6MyaxsPVUedos3xYL57i1evj8yJfxSVTXMZcgrHAjCp4SkqWEVtkxlqCGUgBkJWWMg4KEzCGFUxklbIGuFQAQlRSsDm6mf6G5s89-EFv3b5vQ6WmnHKZ0jTLApVMVNk773uwuuvrnelHTbA-7KMP--jffUJATYGvuoHxH1q_5OuPv-wPIpFqEg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Kershah, Tarek</creator><creator>Anderson, Patrick D.</creator><creator>van Breemen, Lambèrt C. A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-9157-0858</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid></search><sort><creationdate>202007</creationdate><title>Uniaxial and Biaxial Response of Anisotropic Polypropylene</title><author>Kershah, Tarek ; Anderson, Patrick D. ; van Breemen, Lambèrt C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3948-48eafe3a9b451c361fb6aff103e87ee6cf234e901eaa3b376d9fae489ee77d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>biaxial</topic><topic>Biaxial loads</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>finite element modeling</topic><topic>Mathematical models</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>simulations</topic><topic>Three dimensional models</topic><topic>Yield criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kershah, Tarek</creatorcontrib><creatorcontrib>Anderson, Patrick D.</creatorcontrib><creatorcontrib>van Breemen, Lambèrt C. A.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kershah, Tarek</au><au>Anderson, Patrick D.</au><au>van Breemen, Lambèrt C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniaxial and Biaxial Response of Anisotropic Polypropylene</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2020-07</date><risdate>2020</risdate><volume>29</volume><issue>4</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>The response of uniaxial and biaxial anisotropic polypropylene is discussed. A 3D elasto‐viscoplastic constitutive model is developed to account for material anisotropy. The famous Hill’s anisotropic yield criterion is combined with the Eyring relation and implemented in a finite element framework to model the response of the polymer during uniaxial loading. An associated viscoplastic flow rule that describes the magnitude and the direction of the viscoplastic flow is incorporated in the model to simulate complex loading conditions. The model quantitatively captures the yield stresses for uniaxial deformation at a given anisotropic state and material orientation. In addition, the results of simulations demonstrate that the constitutive relations qualitatively describe the material deformation during biaxial loading for both isotropic and anisotropic cases.
This work models the response of an anisotropic polymer during uniaxial and biaxial tensile loading. The model accounts for rate, temperature, and pressure dependencies. It is tested over a range of orientation angles and draw ratios. It can be used to predict the response of anisotropic polymers during complex loading cases such as indentation or scratch testing.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.202000018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9157-0858</orcidid><orcidid>https://orcid.org/0000-0002-0610-1908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1344 |
ispartof | Macromolecular theory and simulations, 2020-07, Vol.29 (4), p.n/a |
issn | 1022-1344 1521-3919 |
language | eng |
recordid | cdi_proquest_journals_2424852566 |
source | Access via Wiley Online Library |
subjects | Anisotropy biaxial Biaxial loads Computer simulation Constitutive models Constitutive relationships Deformation Finite element method finite element modeling Mathematical models Polymers Polypropylene simulations Three dimensional models Yield criteria |
title | Uniaxial and Biaxial Response of Anisotropic Polypropylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniaxial%20and%20Biaxial%20Response%20of%20Anisotropic%20Polypropylene&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Kershah,%20Tarek&rft.date=2020-07&rft.volume=29&rft.issue=4&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.202000018&rft_dat=%3Cproquest_cross%3E2424852566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424852566&rft_id=info:pmid/&rfr_iscdi=true |