Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications
Angiogenesis is a multistep process and various molecules are involved in regulating it. Extracellular vesicles are cell-derived particles, secreted from several types of cells and are known to mediate cell-to-cell communication. These vesicles contain different bio-molecules including nucleic acids...
Gespeichert in:
Veröffentlicht in: | Journal of translational medicine 2020-06, Vol.18 (1), p.249-249, Article 249 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angiogenesis is a multistep process and various molecules are involved in regulating it. Extracellular vesicles are cell-derived particles, secreted from several types of cells and are known to mediate cell-to-cell communication. These vesicles contain different bio-molecules including nucleic acids, proteins, and lipids, which are transported between cells and regulate physiological and pathological conditions in the recipient cell. Exosomes, 30-150 nm extracellular vesicles, and their key roles in tumorigenesis via promoting angiogenesis are of great recent interest. In solid tumors, the suitable blood supply is the hallmark of their progression, growth, and metastasis, so it can be supported by angiogenesis. Tumor cells abundantly release exosomes containing different kinds of biomolecules such as angiogenic molecules that contribute to inducing angiogenesis. These exosomes can be trafficked between tumor cells or between tumor cells and endothelial cells. The protein and nucleic acid cargo of tumor derived-exosomes can deliver to endothelial cells mostly by endocytosis, and then induce angiogenesis. Tumor derived-exosomes can be used as biomarker for cancer diagnosis. Targeting exosome-induced angiogenesis may serve as a promising tool for cancer therapy. Taken together, tumor derived-exosomes are the major contributors in tumor angiogenesis and a supposed target for antiangiogenic therapies. However, further scrutiny is essential to investigate the function of exosomes in tumor angiogenesis and clinical relevance of targeting exosomes for suppressing angiogenesis. |
---|---|
ISSN: | 1479-5876 1479-5876 |
DOI: | 10.1186/s12967-020-02426-5 |