Discrete Generalized Odd Lindley–Weibull Distribution with Applications

In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2020-06, Vol.41 (6), p.945-955
Hauptverfasser: Aryuyuen, Sirinapa, Bodhisuwan, Winai, Volodin, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 6
container_start_page 945
container_title Lobachevskii journal of mathematics
container_volume 41
creator Aryuyuen, Sirinapa
Bodhisuwan, Winai
Volodin, Andrei
description In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.
doi_str_mv 10.1134/S1995080220060037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424755062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424755062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTOTybJslSthUIXKi7DTOaOTolJnEmRuuo7-IY-iVMquBBX93DPd86FS8g5hUtKubi6p2WZQQGMAUgAnh-QES1okZalZIdRRzvd-cfkJIQVRFBKOSLzaxdqjwMmM2zRq8Z9oEmWxiQL15oGN1_bzyd0et00SUQHH-XgujZ5d8NLMun7xtVqtwin5MiqJuDZzxyTx9ubh-lduljO5tPJIq05lUPKma15yZSURhiBGqy2lFMtbZ6XyqiCZ4pjXtRM8lwgE1opDYW0lHENoPmYXOx7e9-9rTEM1apb-zaerJhgIs8ykCxSdE_VvgvBo616716V31QUqt3Hqj8fixm2z4TIts_of5v_D30Dr59uAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424755062</pqid></control><display><type>article</type><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</creator><creatorcontrib>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</creatorcontrib><description>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220060037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Continuity (mathematics) ; Dispersion ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimation ; Parameter estimation ; Probability Theory and Stochastic Processes ; Statistical analysis ; Weibull distribution</subject><ispartof>Lobachevskii journal of mathematics, 2020-06, Vol.41 (6), p.945-955</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</citedby><cites>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080220060037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080220060037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Aryuyuen, Sirinapa</creatorcontrib><creatorcontrib>Bodhisuwan, Winai</creatorcontrib><creatorcontrib>Volodin, Andrei</creatorcontrib><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Dispersion</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical analysis</subject><subject>Weibull distribution</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTOTybJslSthUIXKi7DTOaOTolJnEmRuuo7-IY-iVMquBBX93DPd86FS8g5hUtKubi6p2WZQQGMAUgAnh-QES1okZalZIdRRzvd-cfkJIQVRFBKOSLzaxdqjwMmM2zRq8Z9oEmWxiQL15oGN1_bzyd0et00SUQHH-XgujZ5d8NLMun7xtVqtwin5MiqJuDZzxyTx9ubh-lduljO5tPJIq05lUPKma15yZSURhiBGqy2lFMtbZ6XyqiCZ4pjXtRM8lwgE1opDYW0lHENoPmYXOx7e9-9rTEM1apb-zaerJhgIs8ykCxSdE_VvgvBo616716V31QUqt3Hqj8fixm2z4TIts_of5v_D30Dr59uAA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Aryuyuen, Sirinapa</creator><creator>Bodhisuwan, Winai</creator><creator>Volodin, Andrei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><author>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Dispersion</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical analysis</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryuyuen, Sirinapa</creatorcontrib><creatorcontrib>Bodhisuwan, Winai</creatorcontrib><creatorcontrib>Volodin, Andrei</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryuyuen, Sirinapa</au><au>Bodhisuwan, Winai</au><au>Volodin, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>945</spage><epage>955</epage><pages>945-955</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220060037</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2020-06, Vol.41 (6), p.945-955
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2424755062
source Springer Nature - Complete Springer Journals
subjects Algebra
Analysis
Continuity (mathematics)
Dispersion
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Maximum likelihood estimation
Parameter estimation
Probability Theory and Stochastic Processes
Statistical analysis
Weibull distribution
title Discrete Generalized Odd Lindley–Weibull Distribution with Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Generalized%20Odd%20Lindley%E2%80%93Weibull%20Distribution%20with%20Applications&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Aryuyuen,%20Sirinapa&rft.date=2020-06-01&rft.volume=41&rft.issue=6&rft.spage=945&rft.epage=955&rft.pages=945-955&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220060037&rft_dat=%3Cproquest_cross%3E2424755062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424755062&rft_id=info:pmid/&rfr_iscdi=true