Discrete Generalized Odd Lindley–Weibull Distribution with Applications
In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a v...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2020-06, Vol.41 (6), p.945-955 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 955 |
---|---|
container_issue | 6 |
container_start_page | 945 |
container_title | Lobachevskii journal of mathematics |
container_volume | 41 |
creator | Aryuyuen, Sirinapa Bodhisuwan, Winai Volodin, Andrei |
description | In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data. |
doi_str_mv | 10.1134/S1995080220060037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424755062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424755062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTOTybJslSthUIXKi7DTOaOTolJnEmRuuo7-IY-iVMquBBX93DPd86FS8g5hUtKubi6p2WZQQGMAUgAnh-QES1okZalZIdRRzvd-cfkJIQVRFBKOSLzaxdqjwMmM2zRq8Z9oEmWxiQL15oGN1_bzyd0et00SUQHH-XgujZ5d8NLMun7xtVqtwin5MiqJuDZzxyTx9ubh-lduljO5tPJIq05lUPKma15yZSURhiBGqy2lFMtbZ6XyqiCZ4pjXtRM8lwgE1opDYW0lHENoPmYXOx7e9-9rTEM1apb-zaerJhgIs8ykCxSdE_VvgvBo616716V31QUqt3Hqj8fixm2z4TIts_of5v_D30Dr59uAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424755062</pqid></control><display><type>article</type><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</creator><creatorcontrib>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</creatorcontrib><description>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080220060037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Continuity (mathematics) ; Dispersion ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Maximum likelihood estimation ; Parameter estimation ; Probability Theory and Stochastic Processes ; Statistical analysis ; Weibull distribution</subject><ispartof>Lobachevskii journal of mathematics, 2020-06, Vol.41 (6), p.945-955</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</citedby><cites>FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080220060037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080220060037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Aryuyuen, Sirinapa</creatorcontrib><creatorcontrib>Bodhisuwan, Winai</creatorcontrib><creatorcontrib>Volodin, Andrei</creatorcontrib><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Dispersion</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistical analysis</subject><subject>Weibull distribution</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwF3AdfTOTybJslSthUIXKi7DTOaOTolJnEmRuuo7-IY-iVMquBBX93DPd86FS8g5hUtKubi6p2WZQQGMAUgAnh-QES1okZalZIdRRzvd-cfkJIQVRFBKOSLzaxdqjwMmM2zRq8Z9oEmWxiQL15oGN1_bzyd0et00SUQHH-XgujZ5d8NLMun7xtVqtwin5MiqJuDZzxyTx9ubh-lduljO5tPJIq05lUPKma15yZSURhiBGqy2lFMtbZ6XyqiCZ4pjXtRM8lwgE1opDYW0lHENoPmYXOx7e9-9rTEM1apb-zaerJhgIs8ykCxSdE_VvgvBo616716V31QUqt3Hqj8fixm2z4TIts_of5v_D30Dr59uAA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Aryuyuen, Sirinapa</creator><creator>Bodhisuwan, Winai</creator><creator>Volodin, Andrei</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200601</creationdate><title>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</title><author>Aryuyuen, Sirinapa ; Bodhisuwan, Winai ; Volodin, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-32fc392a66d4d4eb0fbf131b6f779ada835a3e78c26374e24baab086f123b00b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Dispersion</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistical analysis</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryuyuen, Sirinapa</creatorcontrib><creatorcontrib>Bodhisuwan, Winai</creatorcontrib><creatorcontrib>Volodin, Andrei</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryuyuen, Sirinapa</au><au>Bodhisuwan, Winai</au><au>Volodin, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Generalized Odd Lindley–Weibull Distribution with Applications</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>945</spage><epage>955</epage><pages>945-955</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this paper, we introduce a new probability mass function by discretizing the continuous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-skewed shape, and close to symmetric shape. The proposed distribution has five special models, i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh, discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh distributions. Some properties of the proposed distribution are introduced. The maximum likelihood estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and variance of the count data are equal, over-dispersion count data, and under-dispersion count data. Based on the results, we have shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080220060037</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2020-06, Vol.41 (6), p.945-955 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2424755062 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Continuity (mathematics) Dispersion Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Maximum likelihood estimation Parameter estimation Probability Theory and Stochastic Processes Statistical analysis Weibull distribution |
title | Discrete Generalized Odd Lindley–Weibull Distribution with Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Generalized%20Odd%20Lindley%E2%80%93Weibull%20Distribution%20with%20Applications&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Aryuyuen,%20Sirinapa&rft.date=2020-06-01&rft.volume=41&rft.issue=6&rft.spage=945&rft.epage=955&rft.pages=945-955&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080220060037&rft_dat=%3Cproquest_cross%3E2424755062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424755062&rft_id=info:pmid/&rfr_iscdi=true |