Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces
In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. A...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2020-08, Vol.53 (2), p.631-643 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | 2 |
container_start_page | 631 |
container_title | Potential analysis |
container_volume | 53 |
creator | Benyaiche, Allami Khlifi, Ismail |
description | In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations. |
doi_str_mv | 10.1007/s11118-019-09781-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424661295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424661295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKf_gKeA52h-tGlzlDG3wWDIFMRLSNMXyaxtl7TC-tdbneDNd3mX73vwPoSuGb1llGZ3kY2TE8oUoSrLGRlO0ISlGSeKq5dTNKGKS8IlZefoIsYdpZRnWT5Br0sTamPf8aqGfW8q3x2wawJ-7E30la_BBDyvKt923uL5SHS-qSP2NV5ADWEUBijxJlTeDmTbFE0Fn3jbGgvxEp05U0W4-t1T9Pwwf5otyXqzWM3u18QKpjoiEluqXCbGKlkCMOOKlErOC1MUTOSFEK40icwS4Zi0ElxhoXRg00RIZRyIKbo53m1Ds-8hdnrX9ONTVdQ84YmUjKt0pPiRsqGJMYDTbfAfJhw0o_q7oT421GND_dNQD6MkjlIc4foNwt_pf6wvTCN3Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424661295</pqid></control><display><type>article</type><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><source>SpringerLink (Online service)</source><creator>Benyaiche, Allami ; Khlifi, Ismail</creator><creatorcontrib>Benyaiche, Allami ; Khlifi, Ismail</creatorcontrib><description>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-019-09781-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Continuity (mathematics) ; Elliptic functions ; Functional Analysis ; Geometry ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability Theory and Stochastic Processes ; Sobolev space</subject><ispartof>Potential analysis, 2020-08, Vol.53 (2), p.631-643</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</citedby><cites>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</cites><orcidid>0000-0002-8730-4319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-019-09781-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-019-09781-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</description><subject>Continuity (mathematics)</subject><subject>Elliptic functions</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Sobolev space</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKf_gKeA52h-tGlzlDG3wWDIFMRLSNMXyaxtl7TC-tdbneDNd3mX73vwPoSuGb1llGZ3kY2TE8oUoSrLGRlO0ISlGSeKq5dTNKGKS8IlZefoIsYdpZRnWT5Br0sTamPf8aqGfW8q3x2wawJ-7E30la_BBDyvKt923uL5SHS-qSP2NV5ADWEUBijxJlTeDmTbFE0Fn3jbGgvxEp05U0W4-t1T9Pwwf5otyXqzWM3u18QKpjoiEluqXCbGKlkCMOOKlErOC1MUTOSFEK40icwS4Zi0ElxhoXRg00RIZRyIKbo53m1Ds-8hdnrX9ONTVdQ84YmUjKt0pPiRsqGJMYDTbfAfJhw0o_q7oT421GND_dNQD6MkjlIc4foNwt_pf6wvTCN3Ug</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Benyaiche, Allami</creator><creator>Khlifi, Ismail</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></search><sort><creationdate>20200801</creationdate><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><author>Benyaiche, Allami ; Khlifi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuity (mathematics)</topic><topic>Elliptic functions</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benyaiche, Allami</au><au>Khlifi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>631</spage><epage>643</epage><pages>631-643</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-019-09781-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2020-08, Vol.53 (2), p.631-643 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_2424661295 |
source | SpringerLink (Online service) |
subjects | Continuity (mathematics) Elliptic functions Functional Analysis Geometry Mathematical analysis Mathematics Mathematics and Statistics Potential Theory Probability Theory and Stochastic Processes Sobolev space |
title | Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnack%20Inequality%20for%20Quasilinear%20Elliptic%20Equations%20in%20Generalized%20Orlicz-Sobolev%20Spaces&rft.jtitle=Potential%20analysis&rft.au=Benyaiche,%20Allami&rft.date=2020-08-01&rft.volume=53&rft.issue=2&rft.spage=631&rft.epage=643&rft.pages=631-643&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-019-09781-z&rft_dat=%3Cproquest_cross%3E2424661295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424661295&rft_id=info:pmid/&rfr_iscdi=true |