Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces

In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2020-08, Vol.53 (2), p.631-643
Hauptverfasser: Benyaiche, Allami, Khlifi, Ismail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 631
container_title Potential analysis
container_volume 53
creator Benyaiche, Allami
Khlifi, Ismail
description In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.
doi_str_mv 10.1007/s11118-019-09781-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424661295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424661295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKf_gKeA52h-tGlzlDG3wWDIFMRLSNMXyaxtl7TC-tdbneDNd3mX73vwPoSuGb1llGZ3kY2TE8oUoSrLGRlO0ISlGSeKq5dTNKGKS8IlZefoIsYdpZRnWT5Br0sTamPf8aqGfW8q3x2wawJ-7E30la_BBDyvKt923uL5SHS-qSP2NV5ADWEUBijxJlTeDmTbFE0Fn3jbGgvxEp05U0W4-t1T9Pwwf5otyXqzWM3u18QKpjoiEluqXCbGKlkCMOOKlErOC1MUTOSFEK40icwS4Zi0ElxhoXRg00RIZRyIKbo53m1Ds-8hdnrX9ONTVdQ84YmUjKt0pPiRsqGJMYDTbfAfJhw0o_q7oT421GND_dNQD6MkjlIc4foNwt_pf6wvTCN3Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424661295</pqid></control><display><type>article</type><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><source>SpringerLink (Online service)</source><creator>Benyaiche, Allami ; Khlifi, Ismail</creator><creatorcontrib>Benyaiche, Allami ; Khlifi, Ismail</creatorcontrib><description>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-019-09781-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Continuity (mathematics) ; Elliptic functions ; Functional Analysis ; Geometry ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Potential Theory ; Probability Theory and Stochastic Processes ; Sobolev space</subject><ispartof>Potential analysis, 2020-08, Vol.53 (2), p.631-643</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</citedby><cites>FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</cites><orcidid>0000-0002-8730-4319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-019-09781-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-019-09781-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</description><subject>Continuity (mathematics)</subject><subject>Elliptic functions</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Sobolev space</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKf_gKeA52h-tGlzlDG3wWDIFMRLSNMXyaxtl7TC-tdbneDNd3mX73vwPoSuGb1llGZ3kY2TE8oUoSrLGRlO0ISlGSeKq5dTNKGKS8IlZefoIsYdpZRnWT5Br0sTamPf8aqGfW8q3x2wawJ-7E30la_BBDyvKt923uL5SHS-qSP2NV5ADWEUBijxJlTeDmTbFE0Fn3jbGgvxEp05U0W4-t1T9Pwwf5otyXqzWM3u18QKpjoiEluqXCbGKlkCMOOKlErOC1MUTOSFEK40icwS4Zi0ElxhoXRg00RIZRyIKbo53m1Ds-8hdnrX9ONTVdQ84YmUjKt0pPiRsqGJMYDTbfAfJhw0o_q7oT421GND_dNQD6MkjlIc4foNwt_pf6wvTCN3Ug</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Benyaiche, Allami</creator><creator>Khlifi, Ismail</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></search><sort><creationdate>20200801</creationdate><title>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</title><author>Benyaiche, Allami ; Khlifi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-34cd9864ac96dee1afb50622babb138b33fda46743f16c6efbcedfec54369afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuity (mathematics)</topic><topic>Elliptic functions</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benyaiche, Allami</creatorcontrib><creatorcontrib>Khlifi, Ismail</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benyaiche, Allami</au><au>Khlifi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>631</spage><epage>643</epage><pages>631-643</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we prove, by a new method, the Harnack inequality for positive solutions of quasilinear elliptic equations in the generalized Orlicz-Sobolev space setting. Our approach is based on the usage of the Φ-functions associated to generalized Φ-functions and the Moser’s iteration technique. As a consequence, we obtain the Hölder continuity of bounded solutions of such equations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-019-09781-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8730-4319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2020-08, Vol.53 (2), p.631-643
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2424661295
source SpringerLink (Online service)
subjects Continuity (mathematics)
Elliptic functions
Functional Analysis
Geometry
Mathematical analysis
Mathematics
Mathematics and Statistics
Potential Theory
Probability Theory and Stochastic Processes
Sobolev space
title Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnack%20Inequality%20for%20Quasilinear%20Elliptic%20Equations%20in%20Generalized%20Orlicz-Sobolev%20Spaces&rft.jtitle=Potential%20analysis&rft.au=Benyaiche,%20Allami&rft.date=2020-08-01&rft.volume=53&rft.issue=2&rft.spage=631&rft.epage=643&rft.pages=631-643&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-019-09781-z&rft_dat=%3Cproquest_cross%3E2424661295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424661295&rft_id=info:pmid/&rfr_iscdi=true