Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism

Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2020-06, Vol.30 (6), p.814-825
Hauptverfasser: Starostik, Margaret R, Sosina, Olukayode A, McCoy, Rajiv C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 6
container_start_page 814
container_title Genome research
container_volume 30
creator Starostik, Margaret R
Sosina, Olukayode A
McCoy, Rajiv C
description Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mosaicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mitotic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later postimplantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports the conclusion that low-level mosaicism is a common feature of early human development.
doi_str_mv 10.1101/gr.262774.120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2424659010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424659010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-3d16ef7fdbe1d1a980bf795e9cea590b9798533bfc49688318842baa40e0a16d3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMofh-9SsGLl66ZJG2TiyCLXyB4UC9eQtpO10jbrEm7sP-9WXcV9TQD85vHzHuEnACdAFC4mPkJy1lRiAkwukX2IRMqzUSutmNPpUwVzWCPHITwTinlQspdssdZLoApuU9en2w_azGtsG0T05t2GWxIXJO8jZ3pE-xKv3Qh8bhA04aktgv0AZO5GQb0_RdpehznrbP1MrZ10rlgbGVDd0R2mriDx5t6SF5urp-nd-nD4-399OohrQRkQ8pryLEpmrpEqMEoScumUBmqCk2maKkKJTPOy6YSKpeSg5SClcYIitRAXvNDcrnWnY9lh3WF_eBNq-fedsYvtTNW_5309k3P3EIXvIgG8ShwvhHw7mPEMOjOhpUh8TM3Bs0EYxRolouInv1D393oo21flMjjwUAjla6pyrsQPDY_xwDVq9T0zOt1ajqmFvnT3x_80N8x8U9NZJRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424659010</pqid></control><display><type>article</type><title>Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism</title><source>MEDLINE</source><source>PubMed Central (PMC)</source><source>Alma/SFX Local Collection</source><creator>Starostik, Margaret R ; Sosina, Olukayode A ; McCoy, Rajiv C</creator><creatorcontrib>Starostik, Margaret R ; Sosina, Olukayode A ; McCoy, Rajiv C</creatorcontrib><description>Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mosaicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mitotic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later postimplantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports the conclusion that low-level mosaicism is a common feature of early human development.</description><identifier>ISSN: 1088-9051</identifier><identifier>ISSN: 1549-5469</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.262774.120</identifier><identifier>PMID: 32641298</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Algorithms ; Alleles ; Allelic Imbalance ; Aneuploidy ; Cell proliferation ; Cellular stress response ; Copy number ; Embryo, Mammalian - embryology ; Embryonic Development - genetics ; Embryos ; Female ; Gene dosage ; Gene expression ; Gene Expression Regulation, Developmental ; Genomics ; High-Throughput Nucleotide Sequencing ; Humans ; Immune response ; Meiosis ; Models, Biological ; Mosaicism ; Organ Specificity ; Pregnancy ; Protein turnover ; Ribonucleic acid ; RNA ; RNA, Small Cytoplasmic - genetics ; Sequence Analysis, RNA ; Single-Cell Analysis - methods ; Trophectoderm ; Zygotes</subject><ispartof>Genome research, 2020-06, Vol.30 (6), p.814-825</ispartof><rights>2020 Starostik et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Jun 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-3d16ef7fdbe1d1a980bf795e9cea590b9798533bfc49688318842baa40e0a16d3</citedby><cites>FETCH-LOGICAL-c415t-3d16ef7fdbe1d1a980bf795e9cea590b9798533bfc49688318842baa40e0a16d3</cites><orcidid>0000-0003-0615-146X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370883/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370883/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starostik, Margaret R</creatorcontrib><creatorcontrib>Sosina, Olukayode A</creatorcontrib><creatorcontrib>McCoy, Rajiv C</creatorcontrib><title>Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mosaicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mitotic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later postimplantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports the conclusion that low-level mosaicism is a common feature of early human development.</description><subject>Algorithms</subject><subject>Alleles</subject><subject>Allelic Imbalance</subject><subject>Aneuploidy</subject><subject>Cell proliferation</subject><subject>Cellular stress response</subject><subject>Copy number</subject><subject>Embryo, Mammalian - embryology</subject><subject>Embryonic Development - genetics</subject><subject>Embryos</subject><subject>Female</subject><subject>Gene dosage</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Humans</subject><subject>Immune response</subject><subject>Meiosis</subject><subject>Models, Biological</subject><subject>Mosaicism</subject><subject>Organ Specificity</subject><subject>Pregnancy</subject><subject>Protein turnover</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Cytoplasmic - genetics</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>Trophectoderm</subject><subject>Zygotes</subject><issn>1088-9051</issn><issn>1549-5469</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMofh-9SsGLl66ZJG2TiyCLXyB4UC9eQtpO10jbrEm7sP-9WXcV9TQD85vHzHuEnACdAFC4mPkJy1lRiAkwukX2IRMqzUSutmNPpUwVzWCPHITwTinlQspdssdZLoApuU9en2w_azGtsG0T05t2GWxIXJO8jZ3pE-xKv3Qh8bhA04aktgv0AZO5GQb0_RdpehznrbP1MrZ10rlgbGVDd0R2mriDx5t6SF5urp-nd-nD4-399OohrQRkQ8pryLEpmrpEqMEoScumUBmqCk2maKkKJTPOy6YSKpeSg5SClcYIitRAXvNDcrnWnY9lh3WF_eBNq-fedsYvtTNW_5309k3P3EIXvIgG8ShwvhHw7mPEMOjOhpUh8TM3Bs0EYxRolouInv1D393oo21flMjjwUAjla6pyrsQPDY_xwDVq9T0zOt1ajqmFvnT3x_80N8x8U9NZJRY</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Starostik, Margaret R</creator><creator>Sosina, Olukayode A</creator><creator>McCoy, Rajiv C</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0615-146X</orcidid></search><sort><creationdate>202006</creationdate><title>Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism</title><author>Starostik, Margaret R ; Sosina, Olukayode A ; McCoy, Rajiv C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-3d16ef7fdbe1d1a980bf795e9cea590b9798533bfc49688318842baa40e0a16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Alleles</topic><topic>Allelic Imbalance</topic><topic>Aneuploidy</topic><topic>Cell proliferation</topic><topic>Cellular stress response</topic><topic>Copy number</topic><topic>Embryo, Mammalian - embryology</topic><topic>Embryonic Development - genetics</topic><topic>Embryos</topic><topic>Female</topic><topic>Gene dosage</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Humans</topic><topic>Immune response</topic><topic>Meiosis</topic><topic>Models, Biological</topic><topic>Mosaicism</topic><topic>Organ Specificity</topic><topic>Pregnancy</topic><topic>Protein turnover</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Cytoplasmic - genetics</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>Trophectoderm</topic><topic>Zygotes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starostik, Margaret R</creatorcontrib><creatorcontrib>Sosina, Olukayode A</creatorcontrib><creatorcontrib>McCoy, Rajiv C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starostik, Margaret R</au><au>Sosina, Olukayode A</au><au>McCoy, Rajiv C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2020-06</date><risdate>2020</risdate><volume>30</volume><issue>6</issue><spage>814</spage><epage>825</epage><pages>814-825</pages><issn>1088-9051</issn><issn>1549-5469</issn><eissn>1549-5469</eissn><abstract>Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mosaicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mitotic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later postimplantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports the conclusion that low-level mosaicism is a common feature of early human development.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>32641298</pmid><doi>10.1101/gr.262774.120</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0615-146X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2020-06, Vol.30 (6), p.814-825
issn 1088-9051
1549-5469
1549-5469
language eng
recordid cdi_proquest_journals_2424659010
source MEDLINE; PubMed Central (PMC); Alma/SFX Local Collection
subjects Algorithms
Alleles
Allelic Imbalance
Aneuploidy
Cell proliferation
Cellular stress response
Copy number
Embryo, Mammalian - embryology
Embryonic Development - genetics
Embryos
Female
Gene dosage
Gene expression
Gene Expression Regulation, Developmental
Genomics
High-Throughput Nucleotide Sequencing
Humans
Immune response
Meiosis
Models, Biological
Mosaicism
Organ Specificity
Pregnancy
Protein turnover
Ribonucleic acid
RNA
RNA, Small Cytoplasmic - genetics
Sequence Analysis, RNA
Single-Cell Analysis - methods
Trophectoderm
Zygotes
title Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T15%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20analysis%20of%20human%20embryos%20reveals%20diverse%20patterns%20of%20aneuploidy%20and%20mosaicism&rft.jtitle=Genome%20research&rft.au=Starostik,%20Margaret%20R&rft.date=2020-06&rft.volume=30&rft.issue=6&rft.spage=814&rft.epage=825&rft.pages=814-825&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.262774.120&rft_dat=%3Cproquest_pubme%3E2424659010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424659010&rft_id=info:pmid/32641298&rfr_iscdi=true