Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate
The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the...
Gespeichert in:
Veröffentlicht in: | Sustainability 2020-07, Vol.12 (14), p.5611 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 5611 |
container_title | Sustainability |
container_volume | 12 |
creator | Belyanovskaya, Elena Rimár, Miroslav Lytovchenko, Roman D. Variny, Miroslav Sukhyy, Kostyantyn M. Yeromin, Oleksandr O. Sykhyy, Mikhailo P. Prokopenko, Elena M. Sukha, Irina V. Gubinskyi, Mikhailo V. Kizek, Ján |
description | The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors. |
doi_str_mv | 10.3390/su12145611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424609784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424609784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</originalsourceid><addsrcrecordid>eNpNkM1KAzEcxIMoWGovPkHAm7Caj02yOdairVBRbI_Ckk3-q1u2mzXJCt58B9_QJ7FSQecyc_gxA4PQKSUXnGtyGQfKaC4kpQdoxIiiGSWCHP7Lx2gS44bsxDnVVI7Q0wOE2oet6SxgX2PT4amLPvSpeQO8AJOyO9_ENATAj_AMHQSTfMBXJoLDvsOrpm2swXNovz4-V941wxavhrZ_MQlO0FFt2giTXx-j9c31erbIlvfz29l0mVmmRcqcc0WuhJREGVY5WSsNVtW149oVjlNDpNXMKlsYKawAUiipGasq6kSVEz5GZ_vaPvjXAWIqN34I3W6xZDnLJdGqyHfU-Z6ywccYoC770GxNeC8pKX_-K__-498h2mNL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424609784</pqid></control><display><type>article</type><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</creator><creatorcontrib>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</creatorcontrib><description>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12145611</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbents ; Adsorption ; Adsorptivity ; Air conditioning ; Air conditioning equipment ; Air temperature ; Algorithms ; Climate change ; Cold ; Composite materials ; Computer simulation ; Correlation analysis ; Efficiency ; Energy consumption ; Flow velocity ; Heat ; Heat exchangers ; Heating ; Humidity ; Laboratories ; Mathematical models ; Moisture ; Parameter estimation ; Power consumption ; Power management ; Pressure loss ; Silica ; Silica gel ; Sodium sulfate ; Sulfates ; Sustainability ; Ventilation</subject><ispartof>Sustainability, 2020-07, Vol.12 (14), p.5611</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</citedby><cites>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</cites><orcidid>0000-0001-6163-7273 ; 0000-0003-1035-9415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Belyanovskaya, Elena</creatorcontrib><creatorcontrib>Rimár, Miroslav</creatorcontrib><creatorcontrib>Lytovchenko, Roman D.</creatorcontrib><creatorcontrib>Variny, Miroslav</creatorcontrib><creatorcontrib>Sukhyy, Kostyantyn M.</creatorcontrib><creatorcontrib>Yeromin, Oleksandr O.</creatorcontrib><creatorcontrib>Sykhyy, Mikhailo P.</creatorcontrib><creatorcontrib>Prokopenko, Elena M.</creatorcontrib><creatorcontrib>Sukha, Irina V.</creatorcontrib><creatorcontrib>Gubinskyi, Mikhailo V.</creatorcontrib><creatorcontrib>Kizek, Ján</creatorcontrib><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><title>Sustainability</title><description>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Air conditioning</subject><subject>Air conditioning equipment</subject><subject>Air temperature</subject><subject>Algorithms</subject><subject>Climate change</subject><subject>Cold</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Flow velocity</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heating</subject><subject>Humidity</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Moisture</subject><subject>Parameter estimation</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Pressure loss</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Sodium sulfate</subject><subject>Sulfates</subject><subject>Sustainability</subject><subject>Ventilation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEcxIMoWGovPkHAm7Caj02yOdairVBRbI_Ckk3-q1u2mzXJCt58B9_QJ7FSQecyc_gxA4PQKSUXnGtyGQfKaC4kpQdoxIiiGSWCHP7Lx2gS44bsxDnVVI7Q0wOE2oet6SxgX2PT4amLPvSpeQO8AJOyO9_ENATAj_AMHQSTfMBXJoLDvsOrpm2swXNovz4-V941wxavhrZ_MQlO0FFt2giTXx-j9c31erbIlvfz29l0mVmmRcqcc0WuhJREGVY5WSsNVtW149oVjlNDpNXMKlsYKawAUiipGasq6kSVEz5GZ_vaPvjXAWIqN34I3W6xZDnLJdGqyHfU-Z6ywccYoC770GxNeC8pKX_-K__-498h2mNL</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Belyanovskaya, Elena</creator><creator>Rimár, Miroslav</creator><creator>Lytovchenko, Roman D.</creator><creator>Variny, Miroslav</creator><creator>Sukhyy, Kostyantyn M.</creator><creator>Yeromin, Oleksandr O.</creator><creator>Sykhyy, Mikhailo P.</creator><creator>Prokopenko, Elena M.</creator><creator>Sukha, Irina V.</creator><creator>Gubinskyi, Mikhailo V.</creator><creator>Kizek, Ján</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6163-7273</orcidid><orcidid>https://orcid.org/0000-0003-1035-9415</orcidid></search><sort><creationdate>20200701</creationdate><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><author>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Air conditioning</topic><topic>Air conditioning equipment</topic><topic>Air temperature</topic><topic>Algorithms</topic><topic>Climate change</topic><topic>Cold</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Flow velocity</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heating</topic><topic>Humidity</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Moisture</topic><topic>Parameter estimation</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Pressure loss</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Sodium sulfate</topic><topic>Sulfates</topic><topic>Sustainability</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belyanovskaya, Elena</creatorcontrib><creatorcontrib>Rimár, Miroslav</creatorcontrib><creatorcontrib>Lytovchenko, Roman D.</creatorcontrib><creatorcontrib>Variny, Miroslav</creatorcontrib><creatorcontrib>Sukhyy, Kostyantyn M.</creatorcontrib><creatorcontrib>Yeromin, Oleksandr O.</creatorcontrib><creatorcontrib>Sykhyy, Mikhailo P.</creatorcontrib><creatorcontrib>Prokopenko, Elena M.</creatorcontrib><creatorcontrib>Sukha, Irina V.</creatorcontrib><creatorcontrib>Gubinskyi, Mikhailo V.</creatorcontrib><creatorcontrib>Kizek, Ján</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belyanovskaya, Elena</au><au>Rimár, Miroslav</au><au>Lytovchenko, Roman D.</au><au>Variny, Miroslav</au><au>Sukhyy, Kostyantyn M.</au><au>Yeromin, Oleksandr O.</au><au>Sykhyy, Mikhailo P.</au><au>Prokopenko, Elena M.</au><au>Sukha, Irina V.</au><au>Gubinskyi, Mikhailo V.</au><au>Kizek, Ján</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</atitle><jtitle>Sustainability</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>14</issue><spage>5611</spage><pages>5611-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12145611</doi><orcidid>https://orcid.org/0000-0001-6163-7273</orcidid><orcidid>https://orcid.org/0000-0003-1035-9415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2020-07, Vol.12 (14), p.5611 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2424609784 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Adsorbents Adsorption Adsorptivity Air conditioning Air conditioning equipment Air temperature Algorithms Climate change Cold Composite materials Computer simulation Correlation analysis Efficiency Energy consumption Flow velocity Heat Heat exchangers Heating Humidity Laboratories Mathematical models Moisture Parameter estimation Power consumption Power management Pressure loss Silica Silica gel Sodium sulfate Sulfates Sustainability Ventilation |
title | Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20an%20Adsorptive%20Heat-Moisture%20Regenerator%20Based%20on%20Silica%20Gel%E2%80%93Sodium%20Sulphate&rft.jtitle=Sustainability&rft.au=Belyanovskaya,%20Elena&rft.date=2020-07-01&rft.volume=12&rft.issue=14&rft.spage=5611&rft.pages=5611-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12145611&rft_dat=%3Cproquest_cross%3E2424609784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424609784&rft_id=info:pmid/&rfr_iscdi=true |