Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate

The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-07, Vol.12 (14), p.5611
Hauptverfasser: Belyanovskaya, Elena, Rimár, Miroslav, Lytovchenko, Roman D., Variny, Miroslav, Sukhyy, Kostyantyn M., Yeromin, Oleksandr O., Sykhyy, Mikhailo P., Prokopenko, Elena M., Sukha, Irina V., Gubinskyi, Mikhailo V., Kizek, Ján
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 5611
container_title Sustainability
container_volume 12
creator Belyanovskaya, Elena
Rimár, Miroslav
Lytovchenko, Roman D.
Variny, Miroslav
Sukhyy, Kostyantyn M.
Yeromin, Oleksandr O.
Sykhyy, Mikhailo P.
Prokopenko, Elena M.
Sukha, Irina V.
Gubinskyi, Mikhailo V.
Kizek, Ján
description The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.
doi_str_mv 10.3390/su12145611
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424609784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424609784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</originalsourceid><addsrcrecordid>eNpNkM1KAzEcxIMoWGovPkHAm7Caj02yOdairVBRbI_Ckk3-q1u2mzXJCt58B9_QJ7FSQecyc_gxA4PQKSUXnGtyGQfKaC4kpQdoxIiiGSWCHP7Lx2gS44bsxDnVVI7Q0wOE2oet6SxgX2PT4amLPvSpeQO8AJOyO9_ENATAj_AMHQSTfMBXJoLDvsOrpm2swXNovz4-V941wxavhrZ_MQlO0FFt2giTXx-j9c31erbIlvfz29l0mVmmRcqcc0WuhJREGVY5WSsNVtW149oVjlNDpNXMKlsYKawAUiipGasq6kSVEz5GZ_vaPvjXAWIqN34I3W6xZDnLJdGqyHfU-Z6ywccYoC770GxNeC8pKX_-K__-498h2mNL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424609784</pqid></control><display><type>article</type><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</creator><creatorcontrib>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</creatorcontrib><description>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su12145611</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbents ; Adsorption ; Adsorptivity ; Air conditioning ; Air conditioning equipment ; Air temperature ; Algorithms ; Climate change ; Cold ; Composite materials ; Computer simulation ; Correlation analysis ; Efficiency ; Energy consumption ; Flow velocity ; Heat ; Heat exchangers ; Heating ; Humidity ; Laboratories ; Mathematical models ; Moisture ; Parameter estimation ; Power consumption ; Power management ; Pressure loss ; Silica ; Silica gel ; Sodium sulfate ; Sulfates ; Sustainability ; Ventilation</subject><ispartof>Sustainability, 2020-07, Vol.12 (14), p.5611</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</citedby><cites>FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</cites><orcidid>0000-0001-6163-7273 ; 0000-0003-1035-9415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Belyanovskaya, Elena</creatorcontrib><creatorcontrib>Rimár, Miroslav</creatorcontrib><creatorcontrib>Lytovchenko, Roman D.</creatorcontrib><creatorcontrib>Variny, Miroslav</creatorcontrib><creatorcontrib>Sukhyy, Kostyantyn M.</creatorcontrib><creatorcontrib>Yeromin, Oleksandr O.</creatorcontrib><creatorcontrib>Sykhyy, Mikhailo P.</creatorcontrib><creatorcontrib>Prokopenko, Elena M.</creatorcontrib><creatorcontrib>Sukha, Irina V.</creatorcontrib><creatorcontrib>Gubinskyi, Mikhailo V.</creatorcontrib><creatorcontrib>Kizek, Ján</creatorcontrib><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><title>Sustainability</title><description>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Adsorptivity</subject><subject>Air conditioning</subject><subject>Air conditioning equipment</subject><subject>Air temperature</subject><subject>Algorithms</subject><subject>Climate change</subject><subject>Cold</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Flow velocity</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heating</subject><subject>Humidity</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Moisture</subject><subject>Parameter estimation</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Pressure loss</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Sodium sulfate</subject><subject>Sulfates</subject><subject>Sustainability</subject><subject>Ventilation</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1KAzEcxIMoWGovPkHAm7Caj02yOdairVBRbI_Ckk3-q1u2mzXJCt58B9_QJ7FSQecyc_gxA4PQKSUXnGtyGQfKaC4kpQdoxIiiGSWCHP7Lx2gS44bsxDnVVI7Q0wOE2oet6SxgX2PT4amLPvSpeQO8AJOyO9_ENATAj_AMHQSTfMBXJoLDvsOrpm2swXNovz4-V941wxavhrZ_MQlO0FFt2giTXx-j9c31erbIlvfz29l0mVmmRcqcc0WuhJREGVY5WSsNVtW149oVjlNDpNXMKlsYKawAUiipGasq6kSVEz5GZ_vaPvjXAWIqN34I3W6xZDnLJdGqyHfU-Z6ywccYoC770GxNeC8pKX_-K__-498h2mNL</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Belyanovskaya, Elena</creator><creator>Rimár, Miroslav</creator><creator>Lytovchenko, Roman D.</creator><creator>Variny, Miroslav</creator><creator>Sukhyy, Kostyantyn M.</creator><creator>Yeromin, Oleksandr O.</creator><creator>Sykhyy, Mikhailo P.</creator><creator>Prokopenko, Elena M.</creator><creator>Sukha, Irina V.</creator><creator>Gubinskyi, Mikhailo V.</creator><creator>Kizek, Ján</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6163-7273</orcidid><orcidid>https://orcid.org/0000-0003-1035-9415</orcidid></search><sort><creationdate>20200701</creationdate><title>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</title><author>Belyanovskaya, Elena ; Rimár, Miroslav ; Lytovchenko, Roman D. ; Variny, Miroslav ; Sukhyy, Kostyantyn M. ; Yeromin, Oleksandr O. ; Sykhyy, Mikhailo P. ; Prokopenko, Elena M. ; Sukha, Irina V. ; Gubinskyi, Mikhailo V. ; Kizek, Ján</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ddd84756607a2bd6f79ec7ffd39d8d31a06c92c7c8a65c5e0876922bb1d5b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Adsorptivity</topic><topic>Air conditioning</topic><topic>Air conditioning equipment</topic><topic>Air temperature</topic><topic>Algorithms</topic><topic>Climate change</topic><topic>Cold</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Flow velocity</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heating</topic><topic>Humidity</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Moisture</topic><topic>Parameter estimation</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Pressure loss</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Sodium sulfate</topic><topic>Sulfates</topic><topic>Sustainability</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belyanovskaya, Elena</creatorcontrib><creatorcontrib>Rimár, Miroslav</creatorcontrib><creatorcontrib>Lytovchenko, Roman D.</creatorcontrib><creatorcontrib>Variny, Miroslav</creatorcontrib><creatorcontrib>Sukhyy, Kostyantyn M.</creatorcontrib><creatorcontrib>Yeromin, Oleksandr O.</creatorcontrib><creatorcontrib>Sykhyy, Mikhailo P.</creatorcontrib><creatorcontrib>Prokopenko, Elena M.</creatorcontrib><creatorcontrib>Sukha, Irina V.</creatorcontrib><creatorcontrib>Gubinskyi, Mikhailo V.</creatorcontrib><creatorcontrib>Kizek, Ján</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belyanovskaya, Elena</au><au>Rimár, Miroslav</au><au>Lytovchenko, Roman D.</au><au>Variny, Miroslav</au><au>Sukhyy, Kostyantyn M.</au><au>Yeromin, Oleksandr O.</au><au>Sykhyy, Mikhailo P.</au><au>Prokopenko, Elena M.</au><au>Sukha, Irina V.</au><au>Gubinskyi, Mikhailo V.</au><au>Kizek, Ján</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate</atitle><jtitle>Sustainability</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>14</issue><spage>5611</spage><pages>5611-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su12145611</doi><orcidid>https://orcid.org/0000-0001-6163-7273</orcidid><orcidid>https://orcid.org/0000-0003-1035-9415</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2020-07, Vol.12 (14), p.5611
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2424609784
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adsorbents
Adsorption
Adsorptivity
Air conditioning
Air conditioning equipment
Air temperature
Algorithms
Climate change
Cold
Composite materials
Computer simulation
Correlation analysis
Efficiency
Energy consumption
Flow velocity
Heat
Heat exchangers
Heating
Humidity
Laboratories
Mathematical models
Moisture
Parameter estimation
Power consumption
Power management
Pressure loss
Silica
Silica gel
Sodium sulfate
Sulfates
Sustainability
Ventilation
title Performance of an Adsorptive Heat-Moisture Regenerator Based on Silica Gel–Sodium Sulphate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20an%20Adsorptive%20Heat-Moisture%20Regenerator%20Based%20on%20Silica%20Gel%E2%80%93Sodium%20Sulphate&rft.jtitle=Sustainability&rft.au=Belyanovskaya,%20Elena&rft.date=2020-07-01&rft.volume=12&rft.issue=14&rft.spage=5611&rft.pages=5611-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su12145611&rft_dat=%3Cproquest_cross%3E2424609784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424609784&rft_id=info:pmid/&rfr_iscdi=true