The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces

Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs), such as germanium telluride or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-07
Hauptverfasser: Michel, Ann-Katrin U, Meyer, Sebastian, Essing, Nicolas, Nolan Lassaline, Lightner, Carin R, Bisig, Samuel, Norris, David J, Chigrin, Dmitry N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Michel, Ann-Katrin U
Meyer, Sebastian
Essing, Nicolas
Nolan Lassaline
Lightner, Carin R
Bisig, Samuel
Norris, David J
Chigrin, Dmitry N
description Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs), such as germanium telluride or germanium antimony telluride, are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and thus, restricts device miniaturization. Here, we propose thermal scanning-probe-induced local switching of germanium telluride to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. Our design is based on a planar multilayer stack and does not require fabrication of protruding dielectric or metallic resonators as commonly applied in the literature. Instead, we numerically demonstrate that a broad-band tuning of perfect absorption could be realized by the localized and controlled tip-induced crystallization of the PCM layer. The spectral response of the metasurface is explained using simple resonance mode analysis and numerical simulations. To facilitate experimental realization, we provide a detailed theoretical description of the tip-induced crystallization employing multiphysics simulations to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. Our concept allows for tunable perfect absorption and can be applied not only for thermal imaging or sensing, but also for spatial frequency filtering.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2424570144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424570144</sourcerecordid><originalsourceid>FETCH-proquest_journals_24245701443</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3uNBa0HHM9lK0CYTcy9Xu-IPO1Py8f0P0AK0-OOd8GxbxPM-Ss-B8x2Jr5zRN-ankRZFHTDYjQa0dKTfhAlpCpdduUpMaICizBvjoUX1BbXRHFlA9oR7RUlKNqAaCOzoy4W5BagONV9gtgZJD643EnuyBbWXwFP92z47XS1PdkpfRb0_WtbP2RgXVcsFFUaaZEPl_1QdY4kaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424570144</pqid></control><display><type>article</type><title>The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces</title><source>Free E- Journals</source><creator>Michel, Ann-Katrin U ; Meyer, Sebastian ; Essing, Nicolas ; Nolan Lassaline ; Lightner, Carin R ; Bisig, Samuel ; Norris, David J ; Chigrin, Dmitry N</creator><creatorcontrib>Michel, Ann-Katrin U ; Meyer, Sebastian ; Essing, Nicolas ; Nolan Lassaline ; Lightner, Carin R ; Bisig, Samuel ; Norris, David J ; Chigrin, Dmitry N</creatorcontrib><description>Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs), such as germanium telluride or germanium antimony telluride, are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and thus, restricts device miniaturization. Here, we propose thermal scanning-probe-induced local switching of germanium telluride to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. Our design is based on a planar multilayer stack and does not require fabrication of protruding dielectric or metallic resonators as commonly applied in the literature. Instead, we numerically demonstrate that a broad-band tuning of perfect absorption could be realized by the localized and controlled tip-induced crystallization of the PCM layer. The spectral response of the metasurface is explained using simple resonance mode analysis and numerical simulations. To facilitate experimental realization, we provide a detailed theoretical description of the tip-induced crystallization employing multiphysics simulations to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. Our concept allows for tunable perfect absorption and can be applied not only for thermal imaging or sensing, but also for spatial frequency filtering.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorption ; Antimony ; Antimony telluride ; Computer simulation ; Crystallization ; Germanium ; Intermetallic compounds ; Metasurfaces ; Miniaturization ; Multilayers ; Optical switching ; Phase change materials ; Reconfiguration ; Refractivity ; Spectral sensitivity ; Thermal imaging ; Wave fronts</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Michel, Ann-Katrin U</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Essing, Nicolas</creatorcontrib><creatorcontrib>Nolan Lassaline</creatorcontrib><creatorcontrib>Lightner, Carin R</creatorcontrib><creatorcontrib>Bisig, Samuel</creatorcontrib><creatorcontrib>Norris, David J</creatorcontrib><creatorcontrib>Chigrin, Dmitry N</creatorcontrib><title>The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces</title><title>arXiv.org</title><description>Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs), such as germanium telluride or germanium antimony telluride, are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and thus, restricts device miniaturization. Here, we propose thermal scanning-probe-induced local switching of germanium telluride to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. Our design is based on a planar multilayer stack and does not require fabrication of protruding dielectric or metallic resonators as commonly applied in the literature. Instead, we numerically demonstrate that a broad-band tuning of perfect absorption could be realized by the localized and controlled tip-induced crystallization of the PCM layer. The spectral response of the metasurface is explained using simple resonance mode analysis and numerical simulations. To facilitate experimental realization, we provide a detailed theoretical description of the tip-induced crystallization employing multiphysics simulations to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. Our concept allows for tunable perfect absorption and can be applied not only for thermal imaging or sensing, but also for spatial frequency filtering.</description><subject>Absorption</subject><subject>Antimony</subject><subject>Antimony telluride</subject><subject>Computer simulation</subject><subject>Crystallization</subject><subject>Germanium</subject><subject>Intermetallic compounds</subject><subject>Metasurfaces</subject><subject>Miniaturization</subject><subject>Multilayers</subject><subject>Optical switching</subject><subject>Phase change materials</subject><subject>Reconfiguration</subject><subject>Refractivity</subject><subject>Spectral sensitivity</subject><subject>Thermal imaging</subject><subject>Wave fronts</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi80KgkAURocgSMp3uNBa0HHM9lK0CYTcy9Xu-IPO1Py8f0P0AK0-OOd8GxbxPM-Ss-B8x2Jr5zRN-ankRZFHTDYjQa0dKTfhAlpCpdduUpMaICizBvjoUX1BbXRHFlA9oR7RUlKNqAaCOzoy4W5BagONV9gtgZJD643EnuyBbWXwFP92z47XS1PdkpfRb0_WtbP2RgXVcsFFUaaZEPl_1QdY4kaA</recordid><startdate>20200715</startdate><enddate>20200715</enddate><creator>Michel, Ann-Katrin U</creator><creator>Meyer, Sebastian</creator><creator>Essing, Nicolas</creator><creator>Nolan Lassaline</creator><creator>Lightner, Carin R</creator><creator>Bisig, Samuel</creator><creator>Norris, David J</creator><creator>Chigrin, Dmitry N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200715</creationdate><title>The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces</title><author>Michel, Ann-Katrin U ; Meyer, Sebastian ; Essing, Nicolas ; Nolan Lassaline ; Lightner, Carin R ; Bisig, Samuel ; Norris, David J ; Chigrin, Dmitry N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24245701443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption</topic><topic>Antimony</topic><topic>Antimony telluride</topic><topic>Computer simulation</topic><topic>Crystallization</topic><topic>Germanium</topic><topic>Intermetallic compounds</topic><topic>Metasurfaces</topic><topic>Miniaturization</topic><topic>Multilayers</topic><topic>Optical switching</topic><topic>Phase change materials</topic><topic>Reconfiguration</topic><topic>Refractivity</topic><topic>Spectral sensitivity</topic><topic>Thermal imaging</topic><topic>Wave fronts</topic><toplevel>online_resources</toplevel><creatorcontrib>Michel, Ann-Katrin U</creatorcontrib><creatorcontrib>Meyer, Sebastian</creatorcontrib><creatorcontrib>Essing, Nicolas</creatorcontrib><creatorcontrib>Nolan Lassaline</creatorcontrib><creatorcontrib>Lightner, Carin R</creatorcontrib><creatorcontrib>Bisig, Samuel</creatorcontrib><creatorcontrib>Norris, David J</creatorcontrib><creatorcontrib>Chigrin, Dmitry N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michel, Ann-Katrin U</au><au>Meyer, Sebastian</au><au>Essing, Nicolas</au><au>Nolan Lassaline</au><au>Lightner, Carin R</au><au>Bisig, Samuel</au><au>Norris, David J</au><au>Chigrin, Dmitry N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces</atitle><jtitle>arXiv.org</jtitle><date>2020-07-15</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs), such as germanium telluride or germanium antimony telluride, are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and thus, restricts device miniaturization. Here, we propose thermal scanning-probe-induced local switching of germanium telluride to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. Our design is based on a planar multilayer stack and does not require fabrication of protruding dielectric or metallic resonators as commonly applied in the literature. Instead, we numerically demonstrate that a broad-band tuning of perfect absorption could be realized by the localized and controlled tip-induced crystallization of the PCM layer. The spectral response of the metasurface is explained using simple resonance mode analysis and numerical simulations. To facilitate experimental realization, we provide a detailed theoretical description of the tip-induced crystallization employing multiphysics simulations to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. Our concept allows for tunable perfect absorption and can be applied not only for thermal imaging or sensing, but also for spatial frequency filtering.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2424570144
source Free E- Journals
subjects Absorption
Antimony
Antimony telluride
Computer simulation
Crystallization
Germanium
Intermetallic compounds
Metasurfaces
Miniaturization
Multilayers
Optical switching
Phase change materials
Reconfiguration
Refractivity
Spectral sensitivity
Thermal imaging
Wave fronts
title The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Potential%20of%20Combining%20Thermal%20Scanning%20Probes%20and%20Phase-Change%20Materials%20for%20Tunable%20Metasurfaces&rft.jtitle=arXiv.org&rft.au=Michel,%20Ann-Katrin%20U&rft.date=2020-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2424570144%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424570144&rft_id=info:pmid/&rfr_iscdi=true