A deep learning approach for Parkinson’s disease diagnosis from EEG signals

An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-08, Vol.32 (15), p.10927-10933
Hauptverfasser: Oh, Shu Lih, Hagiwara, Yuki, Raghavendra, U., Yuvaraj, Rajamanickam, Arunkumar, N., Murugappan, M., Acharya, U. Rajendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10933
container_issue 15
container_start_page 10927
container_title Neural computing & applications
container_volume 32
creator Oh, Shu Lih
Hagiwara, Yuki
Raghavendra, U.
Yuvaraj, Rajamanickam
Arunkumar, N.
Murugappan, M.
Acharya, U. Rajendra
description An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.
doi_str_mv 10.1007/s00521-018-3689-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424564564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424564564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-9004d904db2839ca02c79049c62b28373c30223c953b7463fe8575d06ecbc2b23</originalsourceid><addsrcrecordid>eNp1UE1PwzAMjRBIjMEP4BaJc8H5bHucpjGQhuAA5yhL09KxpSXeDtz4G_w9fgmpisQJydaT7fds6xFyyeCaAeQ3CKA4y4AVmdBFmakjMmFSiEyAKo7JBEqZplqKU3KGuAEAqQs1IQ8zWnnf0623MbShobbvY2fdK627SJ9sfGsDduH78wtp1aK36BPaJnTYIq1jt6OLxZJi2wS7xXNyUifwF784JS-3i-f5XbZ6XN7PZ6vMSQH7rEzXqzLlmheidBa4y1NZOs2HTi6cAM6FK5VY51KL2hcqVxVo79YuUcSUXI1706_vB497s-kOcfjAcMml0kMkFhtZLnaI0demj-3Oxg_DwAyumdE1k1wzg2tGJQ0fNZi4ofHxb_P_oh_1DG6a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424564564</pqid></control><display><type>article</type><title>A deep learning approach for Parkinson’s disease diagnosis from EEG signals</title><source>SpringerNature Journals</source><creator>Oh, Shu Lih ; Hagiwara, Yuki ; Raghavendra, U. ; Yuvaraj, Rajamanickam ; Arunkumar, N. ; Murugappan, M. ; Acharya, U. Rajendra</creator><creatorcontrib>Oh, Shu Lih ; Hagiwara, Yuki ; Raghavendra, U. ; Yuvaraj, Rajamanickam ; Arunkumar, N. ; Murugappan, M. ; Acharya, U. Rajendra</creatorcontrib><description>An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-018-3689-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Brain ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Deep learning ; Diagnosis ; Electroencephalography ; Image Processing and Computer Vision ; Parkinson's disease ; Probability and Statistics in Computer Science ; S.I. : Computer aided Medical Diagnosis</subject><ispartof>Neural computing &amp; applications, 2020-08, Vol.32 (15), p.10927-10933</ispartof><rights>The Natural Computing Applications Forum 2018</rights><rights>The Natural Computing Applications Forum 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-9004d904db2839ca02c79049c62b28373c30223c953b7463fe8575d06ecbc2b23</citedby><cites>FETCH-LOGICAL-c430t-9004d904db2839ca02c79049c62b28373c30223c953b7463fe8575d06ecbc2b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-018-3689-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-018-3689-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Hagiwara, Yuki</creatorcontrib><creatorcontrib>Raghavendra, U.</creatorcontrib><creatorcontrib>Yuvaraj, Rajamanickam</creatorcontrib><creatorcontrib>Arunkumar, N.</creatorcontrib><creatorcontrib>Murugappan, M.</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><title>A deep learning approach for Parkinson’s disease diagnosis from EEG signals</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Electroencephalography</subject><subject>Image Processing and Computer Vision</subject><subject>Parkinson's disease</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.I. : Computer aided Medical Diagnosis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UE1PwzAMjRBIjMEP4BaJc8H5bHucpjGQhuAA5yhL09KxpSXeDtz4G_w9fgmpisQJydaT7fds6xFyyeCaAeQ3CKA4y4AVmdBFmakjMmFSiEyAKo7JBEqZplqKU3KGuAEAqQs1IQ8zWnnf0623MbShobbvY2fdK627SJ9sfGsDduH78wtp1aK36BPaJnTYIq1jt6OLxZJi2wS7xXNyUifwF784JS-3i-f5XbZ6XN7PZ6vMSQH7rEzXqzLlmheidBa4y1NZOs2HTi6cAM6FK5VY51KL2hcqVxVo79YuUcSUXI1706_vB497s-kOcfjAcMml0kMkFhtZLnaI0demj-3Oxg_DwAyumdE1k1wzg2tGJQ0fNZi4ofHxb_P_oh_1DG6a</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Oh, Shu Lih</creator><creator>Hagiwara, Yuki</creator><creator>Raghavendra, U.</creator><creator>Yuvaraj, Rajamanickam</creator><creator>Arunkumar, N.</creator><creator>Murugappan, M.</creator><creator>Acharya, U. Rajendra</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200801</creationdate><title>A deep learning approach for Parkinson’s disease diagnosis from EEG signals</title><author>Oh, Shu Lih ; Hagiwara, Yuki ; Raghavendra, U. ; Yuvaraj, Rajamanickam ; Arunkumar, N. ; Murugappan, M. ; Acharya, U. Rajendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-9004d904db2839ca02c79049c62b28373c30223c953b7463fe8575d06ecbc2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Electroencephalography</topic><topic>Image Processing and Computer Vision</topic><topic>Parkinson's disease</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.I. : Computer aided Medical Diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Shu Lih</creatorcontrib><creatorcontrib>Hagiwara, Yuki</creatorcontrib><creatorcontrib>Raghavendra, U.</creatorcontrib><creatorcontrib>Yuvaraj, Rajamanickam</creatorcontrib><creatorcontrib>Arunkumar, N.</creatorcontrib><creatorcontrib>Murugappan, M.</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Shu Lih</au><au>Hagiwara, Yuki</au><au>Raghavendra, U.</au><au>Yuvaraj, Rajamanickam</au><au>Arunkumar, N.</au><au>Murugappan, M.</au><au>Acharya, U. Rajendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep learning approach for Parkinson’s disease diagnosis from EEG signals</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>32</volume><issue>15</issue><spage>10927</spage><epage>10933</epage><pages>10927-10933</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and twenty normal subjects in this study. A thirteen -layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-018-3689-5</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-08, Vol.32 (15), p.10927-10933
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2424564564
source SpringerNature Journals
subjects Artificial Intelligence
Artificial neural networks
Brain
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Deep learning
Diagnosis
Electroencephalography
Image Processing and Computer Vision
Parkinson's disease
Probability and Statistics in Computer Science
S.I. : Computer aided Medical Diagnosis
title A deep learning approach for Parkinson’s disease diagnosis from EEG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20learning%20approach%20for%20Parkinson%E2%80%99s%20disease%20diagnosis%20from%20EEG%20signals&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Oh,%20Shu%20Lih&rft.date=2020-08-01&rft.volume=32&rft.issue=15&rft.spage=10927&rft.epage=10933&rft.pages=10927-10933&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-018-3689-5&rft_dat=%3Cproquest_cross%3E2424564564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424564564&rft_id=info:pmid/&rfr_iscdi=true