Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models
The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and ef...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2020-08, Vol.32 (15), p.11361-11371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11371 |
---|---|
container_issue | 15 |
container_start_page | 11361 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Soltani, Moez Telmoudi, Achraf Jabeur Belgacem, Yassine Ben Chaari, Abdelkader |
description | The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets. |
doi_str_mv | 10.1007/s00521-019-04631-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2424564463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424564463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</originalsourceid><addsrcrecordid>eNqNkTuPEzEUhS0EEiHwB6gsUaJh_Zw4JYpgF2l5FFBbflwHL8lMsB1FsxUtNf-QX7KXDIIOUd0j3e8c28eEPOXsBWdsdVEZ04J3jK87pnrJu9M9suBKyk4ybe6TBVsrXPdKPiSPar1hDDGjF-T7B1fcHhqUSnOEoeWUg2t5HKgbIo25hs-ubIEGd3Aht4keCsQczsSY6LscvsDu57cfb6G5Hb2aYsEY6l3DyAlnhUgR3Y8Rk1Gn4-3tRENXYFug1jzvYFcfkwfJ7So8-T2X5NPrVx83V931-8s3m5fXXZDatG7tRQxcrUSQXhgtVBAicu2jMz3nyfm0SsGL3igXmdcpCimCN0a7xIVjSS7Jszn3UMavR6jN3ozHMuCRViihdK-wQKTETIUy1log2UPJe1cmy5n9VbmdK7dYuT1Xbk9oej6bTuDHVEOGIcAfI3auGZey71GhWBLz__Qmt_OvbMbj0NAqZ2tFfNhC-fuGf1zvDo8XqZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424564463</pqid></control><display><type>article</type><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</creator><creatorcontrib>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</creatorcontrib><description>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04631-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Chemical energy ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer Science, Artificial Intelligence ; Data Mining and Knowledge Discovery ; Electric motors ; Electric vehicles ; Electronic components ; Energy storage ; Energy utilization ; Equivalent circuits ; Image Processing and Computer Vision ; Management systems ; Metal hydrides ; Nickel ; Original Article ; Parameter identification ; Power management ; Prediction models ; Probability and Statistics in Computer Science ; Regression models ; Science & Technology ; Technology</subject><ispartof>Neural computing & applications, 2020-08, Vol.32 (15), p.11361-11371</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000501336600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</citedby><cites>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</cites><orcidid>0000-0002-9137-7182 ; 0000-0001-5823-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04631-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04631-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Soltani, Moez</creatorcontrib><creatorcontrib>Telmoudi, Achraf Jabeur</creatorcontrib><creatorcontrib>Belgacem, Yassine Ben</creatorcontrib><creatorcontrib>Chaari, Abdelkader</creatorcontrib><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><addtitle>NEURAL COMPUT APPL</addtitle><description>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemical energy</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electric motors</subject><subject>Electric vehicles</subject><subject>Electronic components</subject><subject>Energy storage</subject><subject>Energy utilization</subject><subject>Equivalent circuits</subject><subject>Image Processing and Computer Vision</subject><subject>Management systems</subject><subject>Metal hydrides</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Power management</subject><subject>Prediction models</subject><subject>Probability and Statistics in Computer Science</subject><subject>Regression models</subject><subject>Science & Technology</subject><subject>Technology</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkTuPEzEUhS0EEiHwB6gsUaJh_Zw4JYpgF2l5FFBbflwHL8lMsB1FsxUtNf-QX7KXDIIOUd0j3e8c28eEPOXsBWdsdVEZ04J3jK87pnrJu9M9suBKyk4ybe6TBVsrXPdKPiSPar1hDDGjF-T7B1fcHhqUSnOEoeWUg2t5HKgbIo25hs-ubIEGd3Aht4keCsQczsSY6LscvsDu57cfb6G5Hb2aYsEY6l3DyAlnhUgR3Y8Rk1Gn4-3tRENXYFug1jzvYFcfkwfJ7So8-T2X5NPrVx83V931-8s3m5fXXZDatG7tRQxcrUSQXhgtVBAicu2jMz3nyfm0SsGL3igXmdcpCimCN0a7xIVjSS7Jszn3UMavR6jN3ozHMuCRViihdK-wQKTETIUy1log2UPJe1cmy5n9VbmdK7dYuT1Xbk9oej6bTuDHVEOGIcAfI3auGZey71GhWBLz__Qmt_OvbMbj0NAqZ2tFfNhC-fuGf1zvDo8XqZ0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Soltani, Moez</creator><creator>Telmoudi, Achraf Jabeur</creator><creator>Belgacem, Yassine Ben</creator><creator>Chaari, Abdelkader</creator><general>Springer London</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9137-7182</orcidid><orcidid>https://orcid.org/0000-0001-5823-4641</orcidid></search><sort><creationdate>20200801</creationdate><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><author>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemical energy</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electric motors</topic><topic>Electric vehicles</topic><topic>Electronic components</topic><topic>Energy storage</topic><topic>Energy utilization</topic><topic>Equivalent circuits</topic><topic>Image Processing and Computer Vision</topic><topic>Management systems</topic><topic>Metal hydrides</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Power management</topic><topic>Prediction models</topic><topic>Probability and Statistics in Computer Science</topic><topic>Regression models</topic><topic>Science & Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, Moez</creatorcontrib><creatorcontrib>Telmoudi, Achraf Jabeur</creatorcontrib><creatorcontrib>Belgacem, Yassine Ben</creatorcontrib><creatorcontrib>Chaari, Abdelkader</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, Moez</au><au>Telmoudi, Achraf Jabeur</au><au>Belgacem, Yassine Ben</au><au>Chaari, Abdelkader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><stitle>NEURAL COMPUT APPL</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>32</volume><issue>15</issue><spage>11361</spage><epage>11371</epage><pages>11361-11371</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04631-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9137-7182</orcidid><orcidid>https://orcid.org/0000-0001-5823-4641</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-08, Vol.32 (15), p.11361-11371 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2424564463 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Chemical energy Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer Science, Artificial Intelligence Data Mining and Knowledge Discovery Electric motors Electric vehicles Electronic components Energy storage Energy utilization Equivalent circuits Image Processing and Computer Vision Management systems Metal hydrides Nickel Original Article Parameter identification Power management Prediction models Probability and Statistics in Computer Science Regression models Science & Technology Technology |
title | Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20identification%20and%20discharge%20capacity%20prediction%20of%20Nickel%E2%80%93Metal%20Hydride%20battery%20based%20on%20modified%20fuzzy%20c-regression%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Soltani,%20Moez&rft.date=2020-08-01&rft.volume=32&rft.issue=15&rft.spage=11361&rft.epage=11371&rft.pages=11361-11371&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04631-w&rft_dat=%3Cproquest_sprin%3E2424564463%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424564463&rft_id=info:pmid/&rfr_iscdi=true |