Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models

The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2020-08, Vol.32 (15), p.11361-11371
Hauptverfasser: Soltani, Moez, Telmoudi, Achraf Jabeur, Belgacem, Yassine Ben, Chaari, Abdelkader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11371
container_issue 15
container_start_page 11361
container_title Neural computing & applications
container_volume 32
creator Soltani, Moez
Telmoudi, Achraf Jabeur
Belgacem, Yassine Ben
Chaari, Abdelkader
description The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.
doi_str_mv 10.1007/s00521-019-04631-w
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2424564463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424564463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</originalsourceid><addsrcrecordid>eNqNkTuPEzEUhS0EEiHwB6gsUaJh_Zw4JYpgF2l5FFBbflwHL8lMsB1FsxUtNf-QX7KXDIIOUd0j3e8c28eEPOXsBWdsdVEZ04J3jK87pnrJu9M9suBKyk4ybe6TBVsrXPdKPiSPar1hDDGjF-T7B1fcHhqUSnOEoeWUg2t5HKgbIo25hs-ubIEGd3Aht4keCsQczsSY6LscvsDu57cfb6G5Hb2aYsEY6l3DyAlnhUgR3Y8Rk1Gn4-3tRENXYFug1jzvYFcfkwfJ7So8-T2X5NPrVx83V931-8s3m5fXXZDatG7tRQxcrUSQXhgtVBAicu2jMz3nyfm0SsGL3igXmdcpCimCN0a7xIVjSS7Jszn3UMavR6jN3ozHMuCRViihdK-wQKTETIUy1log2UPJe1cmy5n9VbmdK7dYuT1Xbk9oej6bTuDHVEOGIcAfI3auGZey71GhWBLz__Qmt_OvbMbj0NAqZ2tFfNhC-fuGf1zvDo8XqZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424564463</pqid></control><display><type>article</type><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</creator><creatorcontrib>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</creatorcontrib><description>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04631-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Chemical energy ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer Science, Artificial Intelligence ; Data Mining and Knowledge Discovery ; Electric motors ; Electric vehicles ; Electronic components ; Energy storage ; Energy utilization ; Equivalent circuits ; Image Processing and Computer Vision ; Management systems ; Metal hydrides ; Nickel ; Original Article ; Parameter identification ; Power management ; Prediction models ; Probability and Statistics in Computer Science ; Regression models ; Science &amp; Technology ; Technology</subject><ispartof>Neural computing &amp; applications, 2020-08, Vol.32 (15), p.11361-11371</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000501336600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</citedby><cites>FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</cites><orcidid>0000-0002-9137-7182 ; 0000-0001-5823-4641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-019-04631-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-019-04631-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Soltani, Moez</creatorcontrib><creatorcontrib>Telmoudi, Achraf Jabeur</creatorcontrib><creatorcontrib>Belgacem, Yassine Ben</creatorcontrib><creatorcontrib>Chaari, Abdelkader</creatorcontrib><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><addtitle>NEURAL COMPUT APPL</addtitle><description>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Chemical energy</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electric motors</subject><subject>Electric vehicles</subject><subject>Electronic components</subject><subject>Energy storage</subject><subject>Energy utilization</subject><subject>Equivalent circuits</subject><subject>Image Processing and Computer Vision</subject><subject>Management systems</subject><subject>Metal hydrides</subject><subject>Nickel</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Power management</subject><subject>Prediction models</subject><subject>Probability and Statistics in Computer Science</subject><subject>Regression models</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkTuPEzEUhS0EEiHwB6gsUaJh_Zw4JYpgF2l5FFBbflwHL8lMsB1FsxUtNf-QX7KXDIIOUd0j3e8c28eEPOXsBWdsdVEZ04J3jK87pnrJu9M9suBKyk4ybe6TBVsrXPdKPiSPar1hDDGjF-T7B1fcHhqUSnOEoeWUg2t5HKgbIo25hs-ubIEGd3Aht4keCsQczsSY6LscvsDu57cfb6G5Hb2aYsEY6l3DyAlnhUgR3Y8Rk1Gn4-3tRENXYFug1jzvYFcfkwfJ7So8-T2X5NPrVx83V931-8s3m5fXXZDatG7tRQxcrUSQXhgtVBAicu2jMz3nyfm0SsGL3igXmdcpCimCN0a7xIVjSS7Jszn3UMavR6jN3ozHMuCRViihdK-wQKTETIUy1log2UPJe1cmy5n9VbmdK7dYuT1Xbk9oej6bTuDHVEOGIcAfI3auGZey71GhWBLz__Qmt_OvbMbj0NAqZ2tFfNhC-fuGf1zvDo8XqZ0</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Soltani, Moez</creator><creator>Telmoudi, Achraf Jabeur</creator><creator>Belgacem, Yassine Ben</creator><creator>Chaari, Abdelkader</creator><general>Springer London</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9137-7182</orcidid><orcidid>https://orcid.org/0000-0001-5823-4641</orcidid></search><sort><creationdate>20200801</creationdate><title>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</title><author>Soltani, Moez ; Telmoudi, Achraf Jabeur ; Belgacem, Yassine Ben ; Chaari, Abdelkader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9b2dc1472c3b28524c22d15bda8611fabf7fcb2684ad0b5fd232cb885af12a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Chemical energy</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electric motors</topic><topic>Electric vehicles</topic><topic>Electronic components</topic><topic>Energy storage</topic><topic>Energy utilization</topic><topic>Equivalent circuits</topic><topic>Image Processing and Computer Vision</topic><topic>Management systems</topic><topic>Metal hydrides</topic><topic>Nickel</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Power management</topic><topic>Prediction models</topic><topic>Probability and Statistics in Computer Science</topic><topic>Regression models</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, Moez</creatorcontrib><creatorcontrib>Telmoudi, Achraf Jabeur</creatorcontrib><creatorcontrib>Belgacem, Yassine Ben</creatorcontrib><creatorcontrib>Chaari, Abdelkader</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, Moez</au><au>Telmoudi, Achraf Jabeur</au><au>Belgacem, Yassine Ben</au><au>Chaari, Abdelkader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><stitle>NEURAL COMPUT APPL</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>32</volume><issue>15</issue><spage>11361</spage><epage>11371</epage><pages>11361-11371</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The battery in the electric vehicles provides the electrical energy necessary to power all electrical and electronic components and main-drive electric motor. So, an accurate estimation of discharge capacity to predict the battery’s end of life is of paramount importance and critical for safe and efficient energy utilization, especially for battery management systems. The resistor–capacitor (RC) equivalent circuit model is commonly used in the literature to model battery. However, a battery is a chemical energy storage system, and then the RC model will therefore be extremely sensitive to the presence of vagueness of information due to that some parameters cannot be directly accessed using sensors. In this paper, we propose a new design methodology for estimating simultaneously the model and the discharge capacity of a Nickel–Metal Hydride (Ni–MH) battery. A modified fuzzy c-regression model algorithm is used to construct a prediction model for a small Ni–MH battery pack. Then, the model, so developed, is used to estimate the discharge capacity of the battery and to predict its remaining useful life. The validity of the proposed method is experimentally verified. According to experimental results, the proposed method can achieve satisfactory results with no more than a 2% error rate for the training and test data sets.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04631-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9137-7182</orcidid><orcidid>https://orcid.org/0000-0001-5823-4641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-08, Vol.32 (15), p.11361-11371
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2424564463
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Chemical energy
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer Science, Artificial Intelligence
Data Mining and Knowledge Discovery
Electric motors
Electric vehicles
Electronic components
Energy storage
Energy utilization
Equivalent circuits
Image Processing and Computer Vision
Management systems
Metal hydrides
Nickel
Original Article
Parameter identification
Power management
Prediction models
Probability and Statistics in Computer Science
Regression models
Science & Technology
Technology
title Parameters identification and discharge capacity prediction of Nickel–Metal Hydride battery based on modified fuzzy c-regression models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20identification%20and%20discharge%20capacity%20prediction%20of%20Nickel%E2%80%93Metal%20Hydride%20battery%20based%20on%20modified%20fuzzy%20c-regression%20models&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Soltani,%20Moez&rft.date=2020-08-01&rft.volume=32&rft.issue=15&rft.spage=11361&rft.epage=11371&rft.pages=11361-11371&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04631-w&rft_dat=%3Cproquest_sprin%3E2424564463%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424564463&rft_id=info:pmid/&rfr_iscdi=true