Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations
The data transmission between 5G floating base stations will be an important application area of the free space optical (FSO) link, but the problem of atmospheric disturbance will directly affect the application effect. An atmospheric turbulence suppression algorithm based on avalanche photodiode ad...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2020-08, Vol.12 (4), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 12 |
creator | Yu, Xiaonan Xiao, Lei Gao, Shuaihe Song, Yansong Zhang, Lei Yao, Haifeng Wang, Tong Chen, Xingchi Jin, Zhiming Zhou, Chang Tong, Shoufeng |
description | The data transmission between 5G floating base stations will be an important application area of the free space optical (FSO) link, but the problem of atmospheric disturbance will directly affect the application effect. An atmospheric turbulence suppression algorithm based on avalanche photodiode adaptive gain control (APDAGC) for the laser transmission terminal was proposed to suppress atmospheric turbulence. The given design mechanism and experimental results demonstrate its function to improve the performance of FSO. When APDAGC is over 1 km FSO, the variance of intensity fluctuation is lowered from 0.046 to 0.009, with the bit error rate reduced from 4.82E-6 to 1E-12. Comparatively, as APDAGC is over 6.5 km FSO, the variance of intensity fluctuation is decreased from 1.767 to 0.376, with the bit error rate varying from 4.6E-2 to 2.4E-4. Moreover, it was used for the first FSO transmission of 5G floating base station signals on an airship platform. |
doi_str_mv | 10.1109/JPHOT.2020.3006511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2424546328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9132688</ieee_id><doaj_id>oai_doaj_org_article_7ef47b97fb2043479a5e3c94837e5453</doaj_id><sourcerecordid>2424546328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f0b9c5fbe2233ed96ecdc01baf69baf314d8022554e8aab0e0efc257182978043</originalsourceid><addsrcrecordid>eNpNkVtrGzEQhZeSQHPpH2hfBHm2q-vu6tFxYyfF4ICdZ6HVjhy569VW0hbaX1_ZDiEvo5nhfGcEpyi-EjwlBMvvP58f19spxRRPGcalIORTcUUkZ5M8iIsP_efiOsZ91kgi5FXxb5YOPg6vEJxB2zE0Ywe9AbQZhyFAjM73aNbtfHDp9YDudYQWHVfPP9Cs1UNyfwAttevR3Pcp-A5ZH9Bis0Yr1_-KyFsklmjReZ1cvzvxaJPy4Pt4W1xa3UX48vbeFC-Lh-38cbJaL5_ms9XEcCzSxOJGGmEboJQxaGUJpjWYNNqWMhdGeFtjSoXgUGvdYMBgDRUVqamsaszZTfF09m293qshuIMOf5XXTp0WPuyUDsmZDlQFlleNrGxDM8grqQUwI3nNKhBcsOx1d_Yagv89Qkxq78fQ5-8ryikXvGS0zip6VpngYwxg368SrI55qVNe6piXessrQ9_OkAOAd0ASRsu6Zv8BTLCQxA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424546328</pqid></control><display><type>article</type><title>Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Xiaonan ; Xiao, Lei ; Gao, Shuaihe ; Song, Yansong ; Zhang, Lei ; Yao, Haifeng ; Wang, Tong ; Chen, Xingchi ; Jin, Zhiming ; Zhou, Chang ; Tong, Shoufeng</creator><creatorcontrib>Yu, Xiaonan ; Xiao, Lei ; Gao, Shuaihe ; Song, Yansong ; Zhang, Lei ; Yao, Haifeng ; Wang, Tong ; Chen, Xingchi ; Jin, Zhiming ; Zhou, Chang ; Tong, Shoufeng</creatorcontrib><description>The data transmission between 5G floating base stations will be an important application area of the free space optical (FSO) link, but the problem of atmospheric disturbance will directly affect the application effect. An atmospheric turbulence suppression algorithm based on avalanche photodiode adaptive gain control (APDAGC) for the laser transmission terminal was proposed to suppress atmospheric turbulence. The given design mechanism and experimental results demonstrate its function to improve the performance of FSO. When APDAGC is over 1 km FSO, the variance of intensity fluctuation is lowered from 0.046 to 0.009, with the bit error rate reduced from 4.82E-6 to 1E-12. Comparatively, as APDAGC is over 6.5 km FSO, the variance of intensity fluctuation is decreased from 1.767 to 0.376, with the bit error rate varying from 4.6E-2 to 2.4E-4. Moreover, it was used for the first FSO transmission of 5G floating base station signals on an airship platform.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2020.3006511</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Adaptive algorithms ; Adaptive control ; adaptive gain control ; Aerodynamics ; airship 5G base station ; Atmospheric measurements ; Atmospheric modeling ; Atmospheric turbulence ; Avalanche diodes ; avalanche photodiode ; Avalanche photodiodes ; Base stations ; Bit error rate ; Data transmission ; Error reduction ; Free space optical communication ; Gain control ; Performance enhancement ; Photodiodes ; Stations</subject><ispartof>IEEE photonics journal, 2020-08, Vol.12 (4), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f0b9c5fbe2233ed96ecdc01baf69baf314d8022554e8aab0e0efc257182978043</citedby><cites>FETCH-LOGICAL-c405t-f0b9c5fbe2233ed96ecdc01baf69baf314d8022554e8aab0e0efc257182978043</cites><orcidid>0000-0003-2868-8583 ; 0000-0002-0858-9396 ; 0000-0002-3425-4696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9132688$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Yu, Xiaonan</creatorcontrib><creatorcontrib>Xiao, Lei</creatorcontrib><creatorcontrib>Gao, Shuaihe</creatorcontrib><creatorcontrib>Song, Yansong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yao, Haifeng</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Chen, Xingchi</creatorcontrib><creatorcontrib>Jin, Zhiming</creatorcontrib><creatorcontrib>Zhou, Chang</creatorcontrib><creatorcontrib>Tong, Shoufeng</creatorcontrib><title>Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The data transmission between 5G floating base stations will be an important application area of the free space optical (FSO) link, but the problem of atmospheric disturbance will directly affect the application effect. An atmospheric turbulence suppression algorithm based on avalanche photodiode adaptive gain control (APDAGC) for the laser transmission terminal was proposed to suppress atmospheric turbulence. The given design mechanism and experimental results demonstrate its function to improve the performance of FSO. When APDAGC is over 1 km FSO, the variance of intensity fluctuation is lowered from 0.046 to 0.009, with the bit error rate reduced from 4.82E-6 to 1E-12. Comparatively, as APDAGC is over 6.5 km FSO, the variance of intensity fluctuation is decreased from 1.767 to 0.376, with the bit error rate varying from 4.6E-2 to 2.4E-4. Moreover, it was used for the first FSO transmission of 5G floating base station signals on an airship platform.</description><subject>5G mobile communication</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>adaptive gain control</subject><subject>Aerodynamics</subject><subject>airship 5G base station</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Atmospheric turbulence</subject><subject>Avalanche diodes</subject><subject>avalanche photodiode</subject><subject>Avalanche photodiodes</subject><subject>Base stations</subject><subject>Bit error rate</subject><subject>Data transmission</subject><subject>Error reduction</subject><subject>Free space optical communication</subject><subject>Gain control</subject><subject>Performance enhancement</subject><subject>Photodiodes</subject><subject>Stations</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtrGzEQhZeSQHPpH2hfBHm2q-vu6tFxYyfF4ICdZ6HVjhy569VW0hbaX1_ZDiEvo5nhfGcEpyi-EjwlBMvvP58f19spxRRPGcalIORTcUUkZ5M8iIsP_efiOsZ91kgi5FXxb5YOPg6vEJxB2zE0Ywe9AbQZhyFAjM73aNbtfHDp9YDudYQWHVfPP9Cs1UNyfwAttevR3Pcp-A5ZH9Bis0Yr1_-KyFsklmjReZ1cvzvxaJPy4Pt4W1xa3UX48vbeFC-Lh-38cbJaL5_ms9XEcCzSxOJGGmEboJQxaGUJpjWYNNqWMhdGeFtjSoXgUGvdYMBgDRUVqamsaszZTfF09m293qshuIMOf5XXTp0WPuyUDsmZDlQFlleNrGxDM8grqQUwI3nNKhBcsOx1d_Yagv89Qkxq78fQ5-8ryikXvGS0zip6VpngYwxg368SrI55qVNe6piXessrQ9_OkAOAd0ASRsu6Zv8BTLCQxA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yu, Xiaonan</creator><creator>Xiao, Lei</creator><creator>Gao, Shuaihe</creator><creator>Song, Yansong</creator><creator>Zhang, Lei</creator><creator>Yao, Haifeng</creator><creator>Wang, Tong</creator><creator>Chen, Xingchi</creator><creator>Jin, Zhiming</creator><creator>Zhou, Chang</creator><creator>Tong, Shoufeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2868-8583</orcidid><orcidid>https://orcid.org/0000-0002-0858-9396</orcidid><orcidid>https://orcid.org/0000-0002-3425-4696</orcidid></search><sort><creationdate>20200801</creationdate><title>Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations</title><author>Yu, Xiaonan ; Xiao, Lei ; Gao, Shuaihe ; Song, Yansong ; Zhang, Lei ; Yao, Haifeng ; Wang, Tong ; Chen, Xingchi ; Jin, Zhiming ; Zhou, Chang ; Tong, Shoufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f0b9c5fbe2233ed96ecdc01baf69baf314d8022554e8aab0e0efc257182978043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>adaptive gain control</topic><topic>Aerodynamics</topic><topic>airship 5G base station</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Atmospheric turbulence</topic><topic>Avalanche diodes</topic><topic>avalanche photodiode</topic><topic>Avalanche photodiodes</topic><topic>Base stations</topic><topic>Bit error rate</topic><topic>Data transmission</topic><topic>Error reduction</topic><topic>Free space optical communication</topic><topic>Gain control</topic><topic>Performance enhancement</topic><topic>Photodiodes</topic><topic>Stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Xiaonan</creatorcontrib><creatorcontrib>Xiao, Lei</creatorcontrib><creatorcontrib>Gao, Shuaihe</creatorcontrib><creatorcontrib>Song, Yansong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yao, Haifeng</creatorcontrib><creatorcontrib>Wang, Tong</creatorcontrib><creatorcontrib>Chen, Xingchi</creatorcontrib><creatorcontrib>Jin, Zhiming</creatorcontrib><creatorcontrib>Zhou, Chang</creatorcontrib><creatorcontrib>Tong, Shoufeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Xiaonan</au><au>Xiao, Lei</au><au>Gao, Shuaihe</au><au>Song, Yansong</au><au>Zhang, Lei</au><au>Yao, Haifeng</au><au>Wang, Tong</au><au>Chen, Xingchi</au><au>Jin, Zhiming</au><au>Zhou, Chang</au><au>Tong, Shoufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The data transmission between 5G floating base stations will be an important application area of the free space optical (FSO) link, but the problem of atmospheric disturbance will directly affect the application effect. An atmospheric turbulence suppression algorithm based on avalanche photodiode adaptive gain control (APDAGC) for the laser transmission terminal was proposed to suppress atmospheric turbulence. The given design mechanism and experimental results demonstrate its function to improve the performance of FSO. When APDAGC is over 1 km FSO, the variance of intensity fluctuation is lowered from 0.046 to 0.009, with the bit error rate reduced from 4.82E-6 to 1E-12. Comparatively, as APDAGC is over 6.5 km FSO, the variance of intensity fluctuation is decreased from 1.767 to 0.376, with the bit error rate varying from 4.6E-2 to 2.4E-4. Moreover, it was used for the first FSO transmission of 5G floating base station signals on an airship platform.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2020.3006511</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2868-8583</orcidid><orcidid>https://orcid.org/0000-0002-0858-9396</orcidid><orcidid>https://orcid.org/0000-0002-3425-4696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2020-08, Vol.12 (4), p.1-11 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_proquest_journals_2424546328 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 5G mobile communication Adaptive algorithms Adaptive control adaptive gain control Aerodynamics airship 5G base station Atmospheric measurements Atmospheric modeling Atmospheric turbulence Avalanche diodes avalanche photodiode Avalanche photodiodes Base stations Bit error rate Data transmission Error reduction Free space optical communication Gain control Performance enhancement Photodiodes Stations |
title | Atmospheric Turbulence Suppression Algorithm Based on APD Adaptive Gain Control for FSO Links of 5G Floating Base Stations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20Turbulence%20Suppression%20Algorithm%20Based%20on%20APD%20Adaptive%20Gain%20Control%20for%20FSO%20Links%20of%205G%20Floating%20Base%20Stations&rft.jtitle=IEEE%20photonics%20journal&rft.au=Yu,%20Xiaonan&rft.date=2020-08-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2020.3006511&rft_dat=%3Cproquest_doaj_%3E2424546328%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424546328&rft_id=info:pmid/&rft_ieee_id=9132688&rft_doaj_id=oai_doaj_org_article_7ef47b97fb2043479a5e3c94837e5453&rfr_iscdi=true |