Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model

Intrinsic variability observed in resistive-switching devices (cycle-to-cycle and device-to-device) is widely recognised as a major hurdle for widespread adoption of Resistive RAM technology. While physics-based models have been developed to accurately reproduce the resistive-switching behaviour, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2020, Vol.19, p.508-518
Hauptverfasser: Reuben, John, Biglari, Mehrdad, Fey, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue
container_start_page 508
container_title IEEE transactions on nanotechnology
container_volume 19
creator Reuben, John
Biglari, Mehrdad
Fey, Dietmar
description Intrinsic variability observed in resistive-switching devices (cycle-to-cycle and device-to-device) is widely recognised as a major hurdle for widespread adoption of Resistive RAM technology. While physics-based models have been developed to accurately reproduce the resistive-switching behaviour, reproducing the observed variability behavior of a specific RRAM has not been studied. Without a properly fitted variability in the model, the simulation error introduced at the device-level propagates through circuit-level to system-level simulations in an unpredictable manner. In this work, we propose an algorithm to fit a certain amount of variability to an existing physics-based analytical model (Stanford-PKU model). The extent of variability exhibited by the device is fitted to the model in a manner agnostic to the cause of variability. Further, the model is modified to better reproduce the variations observed in a device. The model, fitted with variability can well reproduce cycle-to-cycle, as well as device-to-device variations. The significance of integrating variability into RRAM models is underscored using a sensing example.
doi_str_mv 10.1109/TNANO.2020.3004666
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2424545874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9130168</ieee_id><sourcerecordid>2424545874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-238ab1aa71ebc9379bbbd2c2836558b3b20b34d95829367227a552ab87f652a3</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EEqXwA7CxxDrFQ-zYy6piqOiAOiBWRHbigKsQF9tB6t-T0orVfYt77pMOANcYDTBG8m41G87mA4IIGlCEUs75CehhmeIEIcFOu5tRnmDC3s7BRQgbhHDGmeiB93FTOL91XkXbfMBX5a3StrZxB10FFybYEO2PgYvhFNoGjqwvWhvh0n61dYe4JsB12JPx08BlVE3lfJm8PK_h1JWmvgRnlaqDuTpmH6we7lejp2QyfxyPhpOkoFTGhFChNFYqw0YXkmZSa12SggjKGROaaoI0TUvJBJGUZ4RkijGitMgq3iXtg9vD7Na779aEmG9c65vuY05SkrKUiSztWuTQKrwLwZsq33r7pfwuxyjfa8z_NOZ7jflRYwfdHCBrjPkHJKYIc0F_ASJcbg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424545874</pqid></control><display><type>article</type><title>Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model</title><source>IEEE Electronic Library (IEL)</source><creator>Reuben, John ; Biglari, Mehrdad ; Fey, Dietmar</creator><creatorcontrib>Reuben, John ; Biglari, Mehrdad ; Fey, Dietmar</creatorcontrib><description>Intrinsic variability observed in resistive-switching devices (cycle-to-cycle and device-to-device) is widely recognised as a major hurdle for widespread adoption of Resistive RAM technology. While physics-based models have been developed to accurately reproduce the resistive-switching behaviour, reproducing the observed variability behavior of a specific RRAM has not been studied. Without a properly fitted variability in the model, the simulation error introduced at the device-level propagates through circuit-level to system-level simulations in an unpredictable manner. In this work, we propose an algorithm to fit a certain amount of variability to an existing physics-based analytical model (Stanford-PKU model). The extent of variability exhibited by the device is fitted to the model in a manner agnostic to the cause of variability. Further, the model is modified to better reproduce the variations observed in a device. The model, fitted with variability can well reproduce cycle-to-cycle, as well as device-to-device variations. The significance of integrating variability into RRAM models is underscored using a sensing example.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2020.3004666</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1T-1R ; Algorithms ; Analytical models ; Circuits ; Computational modeling ; Computer simulation ; cycle-to-cycle variability ; device-to-device variability ; Integrated circuit modeling ; Mathematical model ; Mathematical models ; memristor ; physics-based models ; Resistance ; Resistive RAM ; Resistive RAM (RRAM) ; resistive-switching ; sense amplifier ; Stanford model ; Switches ; Switching</subject><ispartof>IEEE transactions on nanotechnology, 2020, Vol.19, p.508-518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-238ab1aa71ebc9379bbbd2c2836558b3b20b34d95829367227a552ab87f652a3</citedby><cites>FETCH-LOGICAL-c339t-238ab1aa71ebc9379bbbd2c2836558b3b20b34d95829367227a552ab87f652a3</cites><orcidid>0000-0002-7891-4975 ; 0000-0001-7384-4261 ; 0000-0002-6077-4732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9130168$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9130168$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reuben, John</creatorcontrib><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><title>Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Intrinsic variability observed in resistive-switching devices (cycle-to-cycle and device-to-device) is widely recognised as a major hurdle for widespread adoption of Resistive RAM technology. While physics-based models have been developed to accurately reproduce the resistive-switching behaviour, reproducing the observed variability behavior of a specific RRAM has not been studied. Without a properly fitted variability in the model, the simulation error introduced at the device-level propagates through circuit-level to system-level simulations in an unpredictable manner. In this work, we propose an algorithm to fit a certain amount of variability to an existing physics-based analytical model (Stanford-PKU model). The extent of variability exhibited by the device is fitted to the model in a manner agnostic to the cause of variability. Further, the model is modified to better reproduce the variations observed in a device. The model, fitted with variability can well reproduce cycle-to-cycle, as well as device-to-device variations. The significance of integrating variability into RRAM models is underscored using a sensing example.</description><subject>1T-1R</subject><subject>Algorithms</subject><subject>Analytical models</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>cycle-to-cycle variability</subject><subject>device-to-device variability</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>memristor</subject><subject>physics-based models</subject><subject>Resistance</subject><subject>Resistive RAM</subject><subject>Resistive RAM (RRAM)</subject><subject>resistive-switching</subject><subject>sense amplifier</subject><subject>Stanford model</subject><subject>Switches</subject><subject>Switching</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlOwzAURS0EEqXwA7CxxDrFQ-zYy6piqOiAOiBWRHbigKsQF9tB6t-T0orVfYt77pMOANcYDTBG8m41G87mA4IIGlCEUs75CehhmeIEIcFOu5tRnmDC3s7BRQgbhHDGmeiB93FTOL91XkXbfMBX5a3StrZxB10FFybYEO2PgYvhFNoGjqwvWhvh0n61dYe4JsB12JPx08BlVE3lfJm8PK_h1JWmvgRnlaqDuTpmH6we7lejp2QyfxyPhpOkoFTGhFChNFYqw0YXkmZSa12SggjKGROaaoI0TUvJBJGUZ4RkijGitMgq3iXtg9vD7Na779aEmG9c65vuY05SkrKUiSztWuTQKrwLwZsq33r7pfwuxyjfa8z_NOZ7jflRYwfdHCBrjPkHJKYIc0F_ASJcbg4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Reuben, John</creator><creator>Biglari, Mehrdad</creator><creator>Fey, Dietmar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7891-4975</orcidid><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid><orcidid>https://orcid.org/0000-0002-6077-4732</orcidid></search><sort><creationdate>2020</creationdate><title>Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model</title><author>Reuben, John ; Biglari, Mehrdad ; Fey, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-238ab1aa71ebc9379bbbd2c2836558b3b20b34d95829367227a552ab87f652a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1T-1R</topic><topic>Algorithms</topic><topic>Analytical models</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>cycle-to-cycle variability</topic><topic>device-to-device variability</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>memristor</topic><topic>physics-based models</topic><topic>Resistance</topic><topic>Resistive RAM</topic><topic>Resistive RAM (RRAM)</topic><topic>resistive-switching</topic><topic>sense amplifier</topic><topic>Stanford model</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reuben, John</creatorcontrib><creatorcontrib>Biglari, Mehrdad</creatorcontrib><creatorcontrib>Fey, Dietmar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reuben, John</au><au>Biglari, Mehrdad</au><au>Fey, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><spage>508</spage><epage>518</epage><pages>508-518</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Intrinsic variability observed in resistive-switching devices (cycle-to-cycle and device-to-device) is widely recognised as a major hurdle for widespread adoption of Resistive RAM technology. While physics-based models have been developed to accurately reproduce the resistive-switching behaviour, reproducing the observed variability behavior of a specific RRAM has not been studied. Without a properly fitted variability in the model, the simulation error introduced at the device-level propagates through circuit-level to system-level simulations in an unpredictable manner. In this work, we propose an algorithm to fit a certain amount of variability to an existing physics-based analytical model (Stanford-PKU model). The extent of variability exhibited by the device is fitted to the model in a manner agnostic to the cause of variability. Further, the model is modified to better reproduce the variations observed in a device. The model, fitted with variability can well reproduce cycle-to-cycle, as well as device-to-device variations. The significance of integrating variability into RRAM models is underscored using a sensing example.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2020.3004666</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7891-4975</orcidid><orcidid>https://orcid.org/0000-0001-7384-4261</orcidid><orcidid>https://orcid.org/0000-0002-6077-4732</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2020, Vol.19, p.508-518
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_2424545874
source IEEE Electronic Library (IEL)
subjects 1T-1R
Algorithms
Analytical models
Circuits
Computational modeling
Computer simulation
cycle-to-cycle variability
device-to-device variability
Integrated circuit modeling
Mathematical model
Mathematical models
memristor
physics-based models
Resistance
Resistive RAM
Resistive RAM (RRAM)
resistive-switching
sense amplifier
Stanford model
Switches
Switching
title Incorporating Variability of Resistive RAM in Circuit Simulations Using the Stanford-PKU Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Variability%20of%20Resistive%20RAM%20in%20Circuit%20Simulations%20Using%20the%20Stanford-PKU%20Model&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Reuben,%20John&rft.date=2020&rft.volume=19&rft.spage=508&rft.epage=518&rft.pages=508-518&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2020.3004666&rft_dat=%3Cproquest_RIE%3E2424545874%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424545874&rft_id=info:pmid/&rft_ieee_id=9130168&rfr_iscdi=true