All-Optical Cochlear Implants
In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2020-07, Vol.6 (1), p.13-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | IEEE transactions on molecular, biological, and multi-scale communications |
container_volume | 6 |
creator | Trevlakis, Stylianos E. Boulogeorgos, Alexandros-Apostolos A. Chatzidiamantis, Nestor D. Karagiannidis, George K. |
description | In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the technical characteristics and constraints of each BB, the transdermal-optical-channel particularities, i.e., optical path-loss and external-implanted device stochastic pointing-errors, and the cochlear neurons biological properties. Additionally, in order to prove the feasibility of the AOCI architecture, we conduct a link-budget analysis that outputs novel closed-form expressions for the instantaneous and average photon flux that is emitted on the cochlear neurons. Likewise, we define three new key-performance-indicators (KPIs), namely probability of hearing, probability of false-hearing, and probability of neural damage. The proposed theoretical framework is verified through respective simulations, which not only quantify the efficiency of the proposed architecture, but also reveal an equilibrium between the optical transmission power and the patient's safety, as well as the AOCI BBs specifications. Finally, it is highlighted that the AOCI approach is greener and safer than the conventional CIs. |
doi_str_mv | 10.1109/TMBMC.2020.2996629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2424545472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9098913</ieee_id><sourcerecordid>2424545472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7ca21bec68245c9668c23805e974a371d39163ae49a7658319bdd6de665211623</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsNT-AUUoeE6cmU12s8carBZaeqnnZbvZYsu2ibvpwX9vYorIHGYO7715fIzdI6SIoJ43q5dVmRIQpKSUEKSu2Ii4pIRA4PW_-5ZNYjwAAAoALsWIPc68T9ZNu7fGT8vafnpnwnRxbLw5tfGO3eyMj25y2WP2MX_dlO_Jcv22KGfLxJLK20RaQ7h1VhSU5bZrUFjiBeROycxwiRVXKLhxmTJS5AVHta0qUTkhckIUxMfsachtQv11drHVh_ocTt1LTVmX2Y3sVTSobKhjDG6nm7A_mvCtEXRPQv-S0D0JfSHRmR4G094592dQoAqFnP8AbSRWLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424545472</pqid></control><display><type>article</type><title>All-Optical Cochlear Implants</title><source>IEEE Electronic Library (IEL)</source><creator>Trevlakis, Stylianos E. ; Boulogeorgos, Alexandros-Apostolos A. ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creator><creatorcontrib>Trevlakis, Stylianos E. ; Boulogeorgos, Alexandros-Apostolos A. ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</creatorcontrib><description>In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the technical characteristics and constraints of each BB, the transdermal-optical-channel particularities, i.e., optical path-loss and external-implanted device stochastic pointing-errors, and the cochlear neurons biological properties. Additionally, in order to prove the feasibility of the AOCI architecture, we conduct a link-budget analysis that outputs novel closed-form expressions for the instantaneous and average photon flux that is emitted on the cochlear neurons. Likewise, we define three new key-performance-indicators (KPIs), namely probability of hearing, probability of false-hearing, and probability of neural damage. The proposed theoretical framework is verified through respective simulations, which not only quantify the efficiency of the proposed architecture, but also reveal an equilibrium between the optical transmission power and the patient's safety, as well as the AOCI BBs specifications. Finally, it is highlighted that the AOCI approach is greener and safer than the conventional CIs.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2020.2996629</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Architecture ; Average photon flux ; Biological properties ; biomedical communications ; Biomedical optical imaging ; Cochlear implants ; Computer simulation ; feasibility study ; Hearing ; link-budget ; Micromechanical devices ; Neurons ; Optical communication ; Optical signal processing ; optogenetics ; Stimulated emission ; transdermal optical communications ; Transplants & implants</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2020-07, Vol.6 (1), p.13-24</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7ca21bec68245c9668c23805e974a371d39163ae49a7658319bdd6de665211623</citedby><cites>FETCH-LOGICAL-c295t-7ca21bec68245c9668c23805e974a371d39163ae49a7658319bdd6de665211623</cites><orcidid>0000-0001-8810-0345 ; 0000-0001-5106-7780 ; 0000-0001-6763-7629 ; 0000-0001-8345-0872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9098913$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9098913$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trevlakis, Stylianos E.</creatorcontrib><creatorcontrib>Boulogeorgos, Alexandros-Apostolos A.</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><title>All-Optical Cochlear Implants</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the technical characteristics and constraints of each BB, the transdermal-optical-channel particularities, i.e., optical path-loss and external-implanted device stochastic pointing-errors, and the cochlear neurons biological properties. Additionally, in order to prove the feasibility of the AOCI architecture, we conduct a link-budget analysis that outputs novel closed-form expressions for the instantaneous and average photon flux that is emitted on the cochlear neurons. Likewise, we define three new key-performance-indicators (KPIs), namely probability of hearing, probability of false-hearing, and probability of neural damage. The proposed theoretical framework is verified through respective simulations, which not only quantify the efficiency of the proposed architecture, but also reveal an equilibrium between the optical transmission power and the patient's safety, as well as the AOCI BBs specifications. Finally, it is highlighted that the AOCI approach is greener and safer than the conventional CIs.</description><subject>Architecture</subject><subject>Average photon flux</subject><subject>Biological properties</subject><subject>biomedical communications</subject><subject>Biomedical optical imaging</subject><subject>Cochlear implants</subject><subject>Computer simulation</subject><subject>feasibility study</subject><subject>Hearing</subject><subject>link-budget</subject><subject>Micromechanical devices</subject><subject>Neurons</subject><subject>Optical communication</subject><subject>Optical signal processing</subject><subject>optogenetics</subject><subject>Stimulated emission</subject><subject>transdermal optical communications</subject><subject>Transplants & implants</subject><issn>2372-2061</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsNT-AUUoeE6cmU12s8carBZaeqnnZbvZYsu2ibvpwX9vYorIHGYO7715fIzdI6SIoJ43q5dVmRIQpKSUEKSu2Ii4pIRA4PW_-5ZNYjwAAAoALsWIPc68T9ZNu7fGT8vafnpnwnRxbLw5tfGO3eyMj25y2WP2MX_dlO_Jcv22KGfLxJLK20RaQ7h1VhSU5bZrUFjiBeROycxwiRVXKLhxmTJS5AVHta0qUTkhckIUxMfsachtQv11drHVh_ocTt1LTVmX2Y3sVTSobKhjDG6nm7A_mvCtEXRPQv-S0D0JfSHRmR4G094592dQoAqFnP8AbSRWLQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Trevlakis, Stylianos E.</creator><creator>Boulogeorgos, Alexandros-Apostolos A.</creator><creator>Chatzidiamantis, Nestor D.</creator><creator>Karagiannidis, George K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-5106-7780</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid><orcidid>https://orcid.org/0000-0001-8345-0872</orcidid></search><sort><creationdate>20200701</creationdate><title>All-Optical Cochlear Implants</title><author>Trevlakis, Stylianos E. ; Boulogeorgos, Alexandros-Apostolos A. ; Chatzidiamantis, Nestor D. ; Karagiannidis, George K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7ca21bec68245c9668c23805e974a371d39163ae49a7658319bdd6de665211623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Average photon flux</topic><topic>Biological properties</topic><topic>biomedical communications</topic><topic>Biomedical optical imaging</topic><topic>Cochlear implants</topic><topic>Computer simulation</topic><topic>feasibility study</topic><topic>Hearing</topic><topic>link-budget</topic><topic>Micromechanical devices</topic><topic>Neurons</topic><topic>Optical communication</topic><topic>Optical signal processing</topic><topic>optogenetics</topic><topic>Stimulated emission</topic><topic>transdermal optical communications</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trevlakis, Stylianos E.</creatorcontrib><creatorcontrib>Boulogeorgos, Alexandros-Apostolos A.</creatorcontrib><creatorcontrib>Chatzidiamantis, Nestor D.</creatorcontrib><creatorcontrib>Karagiannidis, George K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trevlakis, Stylianos E.</au><au>Boulogeorgos, Alexandros-Apostolos A.</au><au>Chatzidiamantis, Nestor D.</au><au>Karagiannidis, George K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Optical Cochlear Implants</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>2372-2061</issn><eissn>2372-2061</eissn><abstract>In the present work, we introduce a novel cochlear implant (CI) architecture, namely all-optical CI (AOCI), which directly converts acoustic to optical signals capable of stimulating the cochlear neurons. First, we describe the building-blocks (BBs) of the AOCI, and explain their functionalities as well as their interconnections. Next, we present a comprehensive system model that incorporates the technical characteristics and constraints of each BB, the transdermal-optical-channel particularities, i.e., optical path-loss and external-implanted device stochastic pointing-errors, and the cochlear neurons biological properties. Additionally, in order to prove the feasibility of the AOCI architecture, we conduct a link-budget analysis that outputs novel closed-form expressions for the instantaneous and average photon flux that is emitted on the cochlear neurons. Likewise, we define three new key-performance-indicators (KPIs), namely probability of hearing, probability of false-hearing, and probability of neural damage. The proposed theoretical framework is verified through respective simulations, which not only quantify the efficiency of the proposed architecture, but also reveal an equilibrium between the optical transmission power and the patient's safety, as well as the AOCI BBs specifications. Finally, it is highlighted that the AOCI approach is greener and safer than the conventional CIs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2020.2996629</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8810-0345</orcidid><orcidid>https://orcid.org/0000-0001-5106-7780</orcidid><orcidid>https://orcid.org/0000-0001-6763-7629</orcidid><orcidid>https://orcid.org/0000-0001-8345-0872</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2372-2061 |
ispartof | IEEE transactions on molecular, biological, and multi-scale communications, 2020-07, Vol.6 (1), p.13-24 |
issn | 2372-2061 2372-2061 |
language | eng |
recordid | cdi_proquest_journals_2424545472 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Average photon flux Biological properties biomedical communications Biomedical optical imaging Cochlear implants Computer simulation feasibility study Hearing link-budget Micromechanical devices Neurons Optical communication Optical signal processing optogenetics Stimulated emission transdermal optical communications Transplants & implants |
title | All-Optical Cochlear Implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Optical%20Cochlear%20Implants&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Trevlakis,%20Stylianos%20E.&rft.date=2020-07-01&rft.volume=6&rft.issue=1&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=2372-2061&rft.eissn=2372-2061&rft_id=info:doi/10.1109/TMBMC.2020.2996629&rft_dat=%3Cproquest_RIE%3E2424545472%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424545472&rft_id=info:pmid/&rft_ieee_id=9098913&rfr_iscdi=true |