Design and Implementation of a Compact Single-Photon Counting Module

A compact single-photon counting module that can accurately control the bias voltage and hold-off time is developed in this work. The module is a microcontroller-based system which mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based single-photon avalanch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2020-07, Vol.9 (7), p.1131, Article 1131
Hauptverfasser: Chen, Ming, Li, Chenghao, Morrison, Alan P., Deng, Shijie, Teng, Chuanxin, Liu, Houquan, Deng, Hongchang, Xiong, Xianming, Yuan, Libo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A compact single-photon counting module that can accurately control the bias voltage and hold-off time is developed in this work. The module is a microcontroller-based system which mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based single-photon avalanche diode, and an integrated active quench and reset circuit. The module is 3.8 cm x 3.6 cm x 2 cm in size and can communicate with the end user and be powered through a USB cable (5 V). In this module, the bias voltage of the single-photon avalanche diode (SPAD) is precisely controllable from -14 V similar to -38 V and the hold-off time (consequently the dead time) of the SPAD can be adjusted from a few nanoseconds to around 1.6 mu s with a setting resolution of similar to 6.5 ns. Experimental results show that the module achieves a minimum dead time of around 28.5 ns, giving a saturation counting rate of around 35 Mcounts/s. Results also show that at a controlled reverse bias voltage of 26.8 V, the dark count rate measured is about 300 counts/s and the timing jitter measured is about 158 ps. Photodetection probability measurements show that the module is suited for detection of visible light from 450 nm to 800 nm with a 40% peak photon detection efficiency achieved at around 600 nm.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics9071131