Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review
Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pos...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-07, Vol.10 (14), p.4781, Article 4781 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 4781 |
container_title | Applied sciences |
container_volume | 10 |
creator | Khan, Akbar Shah, Jawad Ali Kadir, Kushsairy Albattah, Waleed Khan, Faizullah |
description | Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years. |
doi_str_mv | 10.3390/app10144781 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2424231573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636912227</galeid><doaj_id>oai_doaj_org_article_7ae7da52821d4198a69fe89e6885d97d</doaj_id><sourcerecordid>A636912227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</originalsourceid><addsrcrecordid>eNqNUU1v1DAQjRBIVKUn_kAkjmiLHTv-4LYKlFZaQAJ6tmbtycpLagfH6Qp-fb0bVHrEc5jR03tvxnpV9ZqSS8Y0eQfjSAnlXCr6rDpriBQrxql8_mR-WV1M056UpylTlJxV37sUD67-HIPPMfmwqyG4ehMtDP4PZB9DfTsd4Q-IY93FcB-H-QjDUH_BOZ1aPsT08329rr_hvcfDq-pFD8OEF3_7eXV79fFHd73afP100603K8sJyytunRJq27ctui2XWyaF4I6D1qzMyK20hMseQeqGEdkIJwpGJdOgwQGy8-pm8XUR9mZM_g7SbxPBmxMQ085Ayt4OaCSgdNA2qqGOU61A6B6VRqFU67R0xevN4jWm-GvGKZt9nFP55WQaXorRVrLCulxYOyimPvQxJ7ClHN55GwP2vuBrwYSmTdPIIni7CGyK05SwfzyTEnNMzTxJrbDVwj7gNvaT9RgsPipKam0rWLnjGCDtfD7l08U55H-L_kfKHgBLMakN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424231573</pqid></control><display><type>article</type><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</creator><creatorcontrib>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</creatorcontrib><description>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10144781</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Airports ; Cameras ; Chemistry ; Chemistry, Multidisciplinary ; Closed circuit television ; Computer vision ; crowd behavior ; crowd counting ; crowd density estimation ; Crowd monitoring ; Crowds ; Datasets ; deep convolutional neural networks (DCNN) ; Distribution ; Engineering ; Engineering, Multidisciplinary ; Learning algorithms ; Localization ; Machine learning ; Materials Science ; Materials Science, Multidisciplinary ; Methods ; Monitoring ; Neural networks ; Observations ; Organizational behavior ; Physical Sciences ; Physics ; Physics, Applied ; Power consumption ; Public safety ; Public video surveillance ; Researchers ; Safety and security measures ; Science & Technology ; Surveillance ; Taxonomy ; Technology ; Technology application ; Television</subject><ispartof>Applied sciences, 2020-07, Vol.10 (14), p.4781, Article 4781</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000556357300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</citedby><cites>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</cites><orcidid>0000-0003-4906-661X ; 0000-0002-0339-4370 ; 0000-0003-0292-7304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2106,2118,27933,27934,28257</link.rule.ids></links><search><creatorcontrib>Khan, Akbar</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><creatorcontrib>Albattah, Waleed</creatorcontrib><creatorcontrib>Khan, Faizullah</creatorcontrib><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><title>Applied sciences</title><addtitle>APPL SCI-BASEL</addtitle><description>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</description><subject>Airports</subject><subject>Cameras</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Closed circuit television</subject><subject>Computer vision</subject><subject>crowd behavior</subject><subject>crowd counting</subject><subject>crowd density estimation</subject><subject>Crowd monitoring</subject><subject>Crowds</subject><subject>Datasets</subject><subject>deep convolutional neural networks (DCNN)</subject><subject>Distribution</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Learning algorithms</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Organizational behavior</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Power consumption</subject><subject>Public safety</subject><subject>Public video surveillance</subject><subject>Researchers</subject><subject>Safety and security measures</subject><subject>Science & Technology</subject><subject>Surveillance</subject><subject>Taxonomy</subject><subject>Technology</subject><subject>Technology application</subject><subject>Television</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1v1DAQjRBIVKUn_kAkjmiLHTv-4LYKlFZaQAJ6tmbtycpLagfH6Qp-fb0bVHrEc5jR03tvxnpV9ZqSS8Y0eQfjSAnlXCr6rDpriBQrxql8_mR-WV1M056UpylTlJxV37sUD67-HIPPMfmwqyG4ehMtDP4PZB9DfTsd4Q-IY93FcB-H-QjDUH_BOZ1aPsT08329rr_hvcfDq-pFD8OEF3_7eXV79fFHd73afP100603K8sJyytunRJq27ctui2XWyaF4I6D1qzMyK20hMseQeqGEdkIJwpGJdOgwQGy8-pm8XUR9mZM_g7SbxPBmxMQ085Ayt4OaCSgdNA2qqGOU61A6B6VRqFU67R0xevN4jWm-GvGKZt9nFP55WQaXorRVrLCulxYOyimPvQxJ7ClHN55GwP2vuBrwYSmTdPIIni7CGyK05SwfzyTEnNMzTxJrbDVwj7gNvaT9RgsPipKam0rWLnjGCDtfD7l08U55H-L_kfKHgBLMakN</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Khan, Akbar</creator><creator>Shah, Jawad Ali</creator><creator>Kadir, Kushsairy</creator><creator>Albattah, Waleed</creator><creator>Khan, Faizullah</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4906-661X</orcidid><orcidid>https://orcid.org/0000-0002-0339-4370</orcidid><orcidid>https://orcid.org/0000-0003-0292-7304</orcidid></search><sort><creationdate>20200701</creationdate><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><author>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Cameras</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Closed circuit television</topic><topic>Computer vision</topic><topic>crowd behavior</topic><topic>crowd counting</topic><topic>crowd density estimation</topic><topic>Crowd monitoring</topic><topic>Crowds</topic><topic>Datasets</topic><topic>deep convolutional neural networks (DCNN)</topic><topic>Distribution</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Learning algorithms</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Organizational behavior</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Power consumption</topic><topic>Public safety</topic><topic>Public video surveillance</topic><topic>Researchers</topic><topic>Safety and security measures</topic><topic>Science & Technology</topic><topic>Surveillance</topic><topic>Taxonomy</topic><topic>Technology</topic><topic>Technology application</topic><topic>Television</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Akbar</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><creatorcontrib>Albattah, Waleed</creatorcontrib><creatorcontrib>Khan, Faizullah</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Akbar</au><au>Shah, Jawad Ali</au><au>Kadir, Kushsairy</au><au>Albattah, Waleed</au><au>Khan, Faizullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</atitle><jtitle>Applied sciences</jtitle><stitle>APPL SCI-BASEL</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>14</issue><spage>4781</spage><pages>4781-</pages><artnum>4781</artnum><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/app10144781</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4906-661X</orcidid><orcidid>https://orcid.org/0000-0002-0339-4370</orcidid><orcidid>https://orcid.org/0000-0003-0292-7304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-07, Vol.10 (14), p.4781, Article 4781 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_proquest_journals_2424231573 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Airports Cameras Chemistry Chemistry, Multidisciplinary Closed circuit television Computer vision crowd behavior crowd counting crowd density estimation Crowd monitoring Crowds Datasets deep convolutional neural networks (DCNN) Distribution Engineering Engineering, Multidisciplinary Learning algorithms Localization Machine learning Materials Science Materials Science, Multidisciplinary Methods Monitoring Neural networks Observations Organizational behavior Physical Sciences Physics Physics, Applied Power consumption Public safety Public video surveillance Researchers Safety and security measures Science & Technology Surveillance Taxonomy Technology Technology application Television |
title | Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowd%20Monitoring%20and%20Localization%20Using%20Deep%20Convolutional%20Neural%20Network:%20A%20Review&rft.jtitle=Applied%20sciences&rft.au=Khan,%20Akbar&rft.date=2020-07-01&rft.volume=10&rft.issue=14&rft.spage=4781&rft.pages=4781-&rft.artnum=4781&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10144781&rft_dat=%3Cgale_proqu%3EA636912227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424231573&rft_id=info:pmid/&rft_galeid=A636912227&rft_doaj_id=oai_doaj_org_article_7ae7da52821d4198a69fe89e6885d97d&rfr_iscdi=true |