Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review

Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-07, Vol.10 (14), p.4781, Article 4781
Hauptverfasser: Khan, Akbar, Shah, Jawad Ali, Kadir, Kushsairy, Albattah, Waleed, Khan, Faizullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page 4781
container_title Applied sciences
container_volume 10
creator Khan, Akbar
Shah, Jawad Ali
Kadir, Kushsairy
Albattah, Waleed
Khan, Faizullah
description Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.
doi_str_mv 10.3390/app10144781
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2424231573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636912227</galeid><doaj_id>oai_doaj_org_article_7ae7da52821d4198a69fe89e6885d97d</doaj_id><sourcerecordid>A636912227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</originalsourceid><addsrcrecordid>eNqNUU1v1DAQjRBIVKUn_kAkjmiLHTv-4LYKlFZaQAJ6tmbtycpLagfH6Qp-fb0bVHrEc5jR03tvxnpV9ZqSS8Y0eQfjSAnlXCr6rDpriBQrxql8_mR-WV1M056UpylTlJxV37sUD67-HIPPMfmwqyG4ehMtDP4PZB9DfTsd4Q-IY93FcB-H-QjDUH_BOZ1aPsT08329rr_hvcfDq-pFD8OEF3_7eXV79fFHd73afP100603K8sJyytunRJq27ctui2XWyaF4I6D1qzMyK20hMseQeqGEdkIJwpGJdOgwQGy8-pm8XUR9mZM_g7SbxPBmxMQ085Ayt4OaCSgdNA2qqGOU61A6B6VRqFU67R0xevN4jWm-GvGKZt9nFP55WQaXorRVrLCulxYOyimPvQxJ7ClHN55GwP2vuBrwYSmTdPIIni7CGyK05SwfzyTEnNMzTxJrbDVwj7gNvaT9RgsPipKam0rWLnjGCDtfD7l08U55H-L_kfKHgBLMakN</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424231573</pqid></control><display><type>article</type><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</creator><creatorcontrib>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</creatorcontrib><description>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10144781</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Airports ; Cameras ; Chemistry ; Chemistry, Multidisciplinary ; Closed circuit television ; Computer vision ; crowd behavior ; crowd counting ; crowd density estimation ; Crowd monitoring ; Crowds ; Datasets ; deep convolutional neural networks (DCNN) ; Distribution ; Engineering ; Engineering, Multidisciplinary ; Learning algorithms ; Localization ; Machine learning ; Materials Science ; Materials Science, Multidisciplinary ; Methods ; Monitoring ; Neural networks ; Observations ; Organizational behavior ; Physical Sciences ; Physics ; Physics, Applied ; Power consumption ; Public safety ; Public video surveillance ; Researchers ; Safety and security measures ; Science &amp; Technology ; Surveillance ; Taxonomy ; Technology ; Technology application ; Television</subject><ispartof>Applied sciences, 2020-07, Vol.10 (14), p.4781, Article 4781</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000556357300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</citedby><cites>FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</cites><orcidid>0000-0003-4906-661X ; 0000-0002-0339-4370 ; 0000-0003-0292-7304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2106,2118,27933,27934,28257</link.rule.ids></links><search><creatorcontrib>Khan, Akbar</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><creatorcontrib>Albattah, Waleed</creatorcontrib><creatorcontrib>Khan, Faizullah</creatorcontrib><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><title>Applied sciences</title><addtitle>APPL SCI-BASEL</addtitle><description>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</description><subject>Airports</subject><subject>Cameras</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Closed circuit television</subject><subject>Computer vision</subject><subject>crowd behavior</subject><subject>crowd counting</subject><subject>crowd density estimation</subject><subject>Crowd monitoring</subject><subject>Crowds</subject><subject>Datasets</subject><subject>deep convolutional neural networks (DCNN)</subject><subject>Distribution</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Learning algorithms</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Observations</subject><subject>Organizational behavior</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Power consumption</subject><subject>Public safety</subject><subject>Public video surveillance</subject><subject>Researchers</subject><subject>Safety and security measures</subject><subject>Science &amp; Technology</subject><subject>Surveillance</subject><subject>Taxonomy</subject><subject>Technology</subject><subject>Technology application</subject><subject>Television</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUU1v1DAQjRBIVKUn_kAkjmiLHTv-4LYKlFZaQAJ6tmbtycpLagfH6Qp-fb0bVHrEc5jR03tvxnpV9ZqSS8Y0eQfjSAnlXCr6rDpriBQrxql8_mR-WV1M056UpylTlJxV37sUD67-HIPPMfmwqyG4ehMtDP4PZB9DfTsd4Q-IY93FcB-H-QjDUH_BOZ1aPsT08329rr_hvcfDq-pFD8OEF3_7eXV79fFHd73afP100603K8sJyytunRJq27ctui2XWyaF4I6D1qzMyK20hMseQeqGEdkIJwpGJdOgwQGy8-pm8XUR9mZM_g7SbxPBmxMQ085Ayt4OaCSgdNA2qqGOU61A6B6VRqFU67R0xevN4jWm-GvGKZt9nFP55WQaXorRVrLCulxYOyimPvQxJ7ClHN55GwP2vuBrwYSmTdPIIni7CGyK05SwfzyTEnNMzTxJrbDVwj7gNvaT9RgsPipKam0rWLnjGCDtfD7l08U55H-L_kfKHgBLMakN</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Khan, Akbar</creator><creator>Shah, Jawad Ali</creator><creator>Kadir, Kushsairy</creator><creator>Albattah, Waleed</creator><creator>Khan, Faizullah</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4906-661X</orcidid><orcidid>https://orcid.org/0000-0002-0339-4370</orcidid><orcidid>https://orcid.org/0000-0003-0292-7304</orcidid></search><sort><creationdate>20200701</creationdate><title>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</title><author>Khan, Akbar ; Shah, Jawad Ali ; Kadir, Kushsairy ; Albattah, Waleed ; Khan, Faizullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-4cd868bf55edb47b37664d4a993b37e4c7c047fea79230726d64c71739a9adae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Airports</topic><topic>Cameras</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Closed circuit television</topic><topic>Computer vision</topic><topic>crowd behavior</topic><topic>crowd counting</topic><topic>crowd density estimation</topic><topic>Crowd monitoring</topic><topic>Crowds</topic><topic>Datasets</topic><topic>deep convolutional neural networks (DCNN)</topic><topic>Distribution</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Learning algorithms</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Observations</topic><topic>Organizational behavior</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Power consumption</topic><topic>Public safety</topic><topic>Public video surveillance</topic><topic>Researchers</topic><topic>Safety and security measures</topic><topic>Science &amp; Technology</topic><topic>Surveillance</topic><topic>Taxonomy</topic><topic>Technology</topic><topic>Technology application</topic><topic>Television</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Akbar</creatorcontrib><creatorcontrib>Shah, Jawad Ali</creatorcontrib><creatorcontrib>Kadir, Kushsairy</creatorcontrib><creatorcontrib>Albattah, Waleed</creatorcontrib><creatorcontrib>Khan, Faizullah</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Akbar</au><au>Shah, Jawad Ali</au><au>Kadir, Kushsairy</au><au>Albattah, Waleed</au><au>Khan, Faizullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review</atitle><jtitle>Applied sciences</jtitle><stitle>APPL SCI-BASEL</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>10</volume><issue>14</issue><spage>4781</spage><pages>4781-</pages><artnum>4781</artnum><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/app10144781</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4906-661X</orcidid><orcidid>https://orcid.org/0000-0002-0339-4370</orcidid><orcidid>https://orcid.org/0000-0003-0292-7304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-07, Vol.10 (14), p.4781, Article 4781
issn 2076-3417
2076-3417
language eng
recordid cdi_proquest_journals_2424231573
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Airports
Cameras
Chemistry
Chemistry, Multidisciplinary
Closed circuit television
Computer vision
crowd behavior
crowd counting
crowd density estimation
Crowd monitoring
Crowds
Datasets
deep convolutional neural networks (DCNN)
Distribution
Engineering
Engineering, Multidisciplinary
Learning algorithms
Localization
Machine learning
Materials Science
Materials Science, Multidisciplinary
Methods
Monitoring
Neural networks
Observations
Organizational behavior
Physical Sciences
Physics
Physics, Applied
Power consumption
Public safety
Public video surveillance
Researchers
Safety and security measures
Science & Technology
Surveillance
Taxonomy
Technology
Technology application
Television
title Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowd%20Monitoring%20and%20Localization%20Using%20Deep%20Convolutional%20Neural%20Network:%20A%20Review&rft.jtitle=Applied%20sciences&rft.au=Khan,%20Akbar&rft.date=2020-07-01&rft.volume=10&rft.issue=14&rft.spage=4781&rft.pages=4781-&rft.artnum=4781&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10144781&rft_dat=%3Cgale_proqu%3EA636912227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424231573&rft_id=info:pmid/&rft_galeid=A636912227&rft_doaj_id=oai_doaj_org_article_7ae7da52821d4198a69fe89e6885d97d&rfr_iscdi=true