GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network

Depth estimation from stereo images is essential to many applications such as robotics and autonomous vehicles, most of which ask for the real-time response, high energy and storage efficiency. Recent work has shown deep neural networks (DNN) perform extremely well for stereo estimation. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2020-12, Vol.31 (12), p.2896-2907
Hauptverfasser: Chen, Gang, Meng, Haitao, Liang, Yucheng, Huang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2907
container_issue 12
container_start_page 2896
container_title IEEE transactions on parallel and distributed systems
container_volume 31
creator Chen, Gang
Meng, Haitao
Liang, Yucheng
Huang, Kai
description Depth estimation from stereo images is essential to many applications such as robotics and autonomous vehicles, most of which ask for the real-time response, high energy and storage efficiency. Recent work has shown deep neural networks (DNN) perform extremely well for stereo estimation. However, these state-of-the-art DNN based algorithms are challenging to be deployed into real-world applications due to the high computational complexities of DNNs. Most of them are too slow for real-time inference and require several seconds of GPU computation to process image frames. In this article, we address the problem of fast stereo estimation and propose an efficient and light-weighted stereo matching system, called StereoBit, to produce a disparity map in a real-time manner while achieving close to state-of-the-art accuracy. To achieve this goal, we propose a binary neural network to generate weighted Hamming distance for an efficient similarity join in stereo estimation. In addition, we propose a novel approximation approach to derive StereoBit network directly from the well-trained network with the cosine similarity. Our approximation strategies enable a significant speedup while maintaining almost the same accuracy compared to the network with the cosine similarity. Furthermore, we present an optimization framework for fully exploiting the computing power of StereoBit. The framework provides a significant speedup of stereo estimation routines, and at the same time, reduces the memory usage for storing parameters. The effectiveness of StereoBit is evaluated by comprehensive experiments. StereoBit can achieve 60 frames per second on an NVIDIA TITAN Xp GPU on KITTI 2012 benchmark while achieving 3-pixel non-occluded stereo error 3.56 percent.
doi_str_mv 10.1109/TPDS.2020.3006238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2424188219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9130887</ieee_id><sourcerecordid>2424188219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-104a2ea1c2ed771bfaf6cdffedc8cd4f7ec4ceeceee6d4335731c7972c8f48603</originalsourceid><addsrcrecordid>eNo9UE1LAzEUDKJgrf4A8bLgOTVfu8kea22rULTYFo8hZl9w67ZbkyzSf29Ki_Bg3mHmzZtB6JaSAaWkfFjOnxYDRhgZcEIKxtUZ6tE8V5hRxc_TTkSOS0bLS3QVwpoQKnIiemgyna_w0FpowJsIVfYOpsHLegPZIoKHNhuHWG9MrNtt9lHHr-yx3hq_z16h86ZJEH9b_32NLpxpAtycsI9Wk_Fy9Ixnb9OX0XCGLSt5xOkLw8BQy6CSkn464wpbOQeVVbYSToIVFiANFJXgPJecWllKZpUTqiC8j-6Pd3e-_ekgRL1uO79NlpoJJqhSKWJi0SPL-jYED07vfMrg95oSfahLH-rSh7r0qa6kuTtq6mT-zy8pJ0pJ_geFvWah</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424188219</pqid></control><display><type>article</type><title>GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Gang ; Meng, Haitao ; Liang, Yucheng ; Huang, Kai</creator><creatorcontrib>Chen, Gang ; Meng, Haitao ; Liang, Yucheng ; Huang, Kai</creatorcontrib><description>Depth estimation from stereo images is essential to many applications such as robotics and autonomous vehicles, most of which ask for the real-time response, high energy and storage efficiency. Recent work has shown deep neural networks (DNN) perform extremely well for stereo estimation. However, these state-of-the-art DNN based algorithms are challenging to be deployed into real-world applications due to the high computational complexities of DNNs. Most of them are too slow for real-time inference and require several seconds of GPU computation to process image frames. In this article, we address the problem of fast stereo estimation and propose an efficient and light-weighted stereo matching system, called StereoBit, to produce a disparity map in a real-time manner while achieving close to state-of-the-art accuracy. To achieve this goal, we propose a binary neural network to generate weighted Hamming distance for an efficient similarity join in stereo estimation. In addition, we propose a novel approximation approach to derive StereoBit network directly from the well-trained network with the cosine similarity. Our approximation strategies enable a significant speedup while maintaining almost the same accuracy compared to the network with the cosine similarity. Furthermore, we present an optimization framework for fully exploiting the computing power of StereoBit. The framework provides a significant speedup of stereo estimation routines, and at the same time, reduces the memory usage for storing parameters. The effectiveness of StereoBit is evaluated by comprehensive experiments. StereoBit can achieve 60 frames per second on an NVIDIA TITAN Xp GPU on KITTI 2012 benchmark while achieving 3-pixel non-occluded stereo error 3.56 percent.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2020.3006238</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Artificial neural networks ; binary neural network ; Computational modeling ; Convolution ; Energy storage ; Estimation ; Frames (data processing) ; Frames per second ; GPU acceleration ; Graphics processing units ; Mathematical analysis ; Neural networks ; Optimization ; Real time ; Real-time systems ; Robotics ; Similarity ; stereo estimation ; Time response</subject><ispartof>IEEE transactions on parallel and distributed systems, 2020-12, Vol.31 (12), p.2896-2907</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-104a2ea1c2ed771bfaf6cdffedc8cd4f7ec4ceeceee6d4335731c7972c8f48603</citedby><cites>FETCH-LOGICAL-c293t-104a2ea1c2ed771bfaf6cdffedc8cd4f7ec4ceeceee6d4335731c7972c8f48603</cites><orcidid>0000-0001-9917-5625 ; 0000-0003-0359-7810 ; 0000-0003-4234-1359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9130887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9130887$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Meng, Haitao</creatorcontrib><creatorcontrib>Liang, Yucheng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><title>GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Depth estimation from stereo images is essential to many applications such as robotics and autonomous vehicles, most of which ask for the real-time response, high energy and storage efficiency. Recent work has shown deep neural networks (DNN) perform extremely well for stereo estimation. However, these state-of-the-art DNN based algorithms are challenging to be deployed into real-world applications due to the high computational complexities of DNNs. Most of them are too slow for real-time inference and require several seconds of GPU computation to process image frames. In this article, we address the problem of fast stereo estimation and propose an efficient and light-weighted stereo matching system, called StereoBit, to produce a disparity map in a real-time manner while achieving close to state-of-the-art accuracy. To achieve this goal, we propose a binary neural network to generate weighted Hamming distance for an efficient similarity join in stereo estimation. In addition, we propose a novel approximation approach to derive StereoBit network directly from the well-trained network with the cosine similarity. Our approximation strategies enable a significant speedup while maintaining almost the same accuracy compared to the network with the cosine similarity. Furthermore, we present an optimization framework for fully exploiting the computing power of StereoBit. The framework provides a significant speedup of stereo estimation routines, and at the same time, reduces the memory usage for storing parameters. The effectiveness of StereoBit is evaluated by comprehensive experiments. StereoBit can achieve 60 frames per second on an NVIDIA TITAN Xp GPU on KITTI 2012 benchmark while achieving 3-pixel non-occluded stereo error 3.56 percent.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>binary neural network</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>Energy storage</subject><subject>Estimation</subject><subject>Frames (data processing)</subject><subject>Frames per second</subject><subject>GPU acceleration</subject><subject>Graphics processing units</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robotics</subject><subject>Similarity</subject><subject>stereo estimation</subject><subject>Time response</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEUDKJgrf4A8bLgOTVfu8kea22rULTYFo8hZl9w67ZbkyzSf29Ki_Bg3mHmzZtB6JaSAaWkfFjOnxYDRhgZcEIKxtUZ6tE8V5hRxc_TTkSOS0bLS3QVwpoQKnIiemgyna_w0FpowJsIVfYOpsHLegPZIoKHNhuHWG9MrNtt9lHHr-yx3hq_z16h86ZJEH9b_32NLpxpAtycsI9Wk_Fy9Ixnb9OX0XCGLSt5xOkLw8BQy6CSkn464wpbOQeVVbYSToIVFiANFJXgPJecWllKZpUTqiC8j-6Pd3e-_ekgRL1uO79NlpoJJqhSKWJi0SPL-jYED07vfMrg95oSfahLH-rSh7r0qa6kuTtq6mT-zy8pJ0pJ_geFvWah</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Gang</creator><creator>Meng, Haitao</creator><creator>Liang, Yucheng</creator><creator>Huang, Kai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9917-5625</orcidid><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4234-1359</orcidid></search><sort><creationdate>20201201</creationdate><title>GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network</title><author>Chen, Gang ; Meng, Haitao ; Liang, Yucheng ; Huang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-104a2ea1c2ed771bfaf6cdffedc8cd4f7ec4ceeceee6d4335731c7972c8f48603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>binary neural network</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>Energy storage</topic><topic>Estimation</topic><topic>Frames (data processing)</topic><topic>Frames per second</topic><topic>GPU acceleration</topic><topic>Graphics processing units</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robotics</topic><topic>Similarity</topic><topic>stereo estimation</topic><topic>Time response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Meng, Haitao</creatorcontrib><creatorcontrib>Liang, Yucheng</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Gang</au><au>Meng, Haitao</au><au>Liang, Yucheng</au><au>Huang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>2896</spage><epage>2907</epage><pages>2896-2907</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Depth estimation from stereo images is essential to many applications such as robotics and autonomous vehicles, most of which ask for the real-time response, high energy and storage efficiency. Recent work has shown deep neural networks (DNN) perform extremely well for stereo estimation. However, these state-of-the-art DNN based algorithms are challenging to be deployed into real-world applications due to the high computational complexities of DNNs. Most of them are too slow for real-time inference and require several seconds of GPU computation to process image frames. In this article, we address the problem of fast stereo estimation and propose an efficient and light-weighted stereo matching system, called StereoBit, to produce a disparity map in a real-time manner while achieving close to state-of-the-art accuracy. To achieve this goal, we propose a binary neural network to generate weighted Hamming distance for an efficient similarity join in stereo estimation. In addition, we propose a novel approximation approach to derive StereoBit network directly from the well-trained network with the cosine similarity. Our approximation strategies enable a significant speedup while maintaining almost the same accuracy compared to the network with the cosine similarity. Furthermore, we present an optimization framework for fully exploiting the computing power of StereoBit. The framework provides a significant speedup of stereo estimation routines, and at the same time, reduces the memory usage for storing parameters. The effectiveness of StereoBit is evaluated by comprehensive experiments. StereoBit can achieve 60 frames per second on an NVIDIA TITAN Xp GPU on KITTI 2012 benchmark while achieving 3-pixel non-occluded stereo error 3.56 percent.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2020.3006238</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9917-5625</orcidid><orcidid>https://orcid.org/0000-0003-0359-7810</orcidid><orcidid>https://orcid.org/0000-0003-4234-1359</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2020-12, Vol.31 (12), p.2896-2907
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2424188219
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Artificial neural networks
binary neural network
Computational modeling
Convolution
Energy storage
Estimation
Frames (data processing)
Frames per second
GPU acceleration
Graphics processing units
Mathematical analysis
Neural networks
Optimization
Real time
Real-time systems
Robotics
Similarity
stereo estimation
Time response
title GPU-Accelerated Real-Time Stereo Estimation With Binary Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-Accelerated%20Real-Time%20Stereo%20Estimation%20With%20Binary%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Chen,%20Gang&rft.date=2020-12-01&rft.volume=31&rft.issue=12&rft.spage=2896&rft.epage=2907&rft.pages=2896-2907&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2020.3006238&rft_dat=%3Cproquest_RIE%3E2424188219%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424188219&rft_id=info:pmid/&rft_ieee_id=9130887&rfr_iscdi=true