D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit
Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reus...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2020-08, Vol.113 (3), p.1455-1470 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1470 |
---|---|
container_issue | 3 |
container_start_page | 1455 |
container_title | Wireless personal communications |
container_volume | 113 |
creator | Kuo, Fang-Chang Schindelhauer, Christian Wang, Hwang-Cheng Lin, Wen-Jun Tseng, Chih-Cheng |
description | Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput. |
doi_str_mv | 10.1007/s11277-020-07313-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424120872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424120872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62hyM00yyz58QUXxAe5CmodOmU5qMqX035s6gjtXl8s537ncg9A5JZeUEHGVKAUhMAGCiWCUYThAAzoSgCUr3w_RgFRQYQ4UjtFJSktCMlbBAL3MYFY8uxQ20bhi3DTB6K4ObbGtu8_iKWxdLKah7WJoiolOzhZZe9g0XY3Xjd5ltV90XGVtoltbd6foyOsmubPfOURvN9ev0zs8f7y9n47n2LCR7DDzsqScGb_QQnBOWCmBl9bIBaGe-pExrALOpR5xQbglcmGM8VZab62obMmG6KLPXcfwtXGpU8v8RptPKiihpECkgOyC3mViSCk6r9axXum4U5SofXmqL0_l8tRPeWoPsR5K2dx-uPgX_Q_1DZIhcTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424120872</pqid></control><display><type>article</type><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><source>SpringerLink Journals</source><creator>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</creator><creatorcontrib>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</creatorcontrib><description>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07313-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cellular communication ; Communications Engineering ; Computer Communication Networks ; Computer simulation ; Engineering ; Machine learning ; Multi-armed bandit problems ; Networks ; Performance enhancement ; Power control ; Power management ; Resource allocation ; Reuse ; Signal,Image and Speech Processing ; Wireless networks</subject><ispartof>Wireless personal communications, 2020-08, Vol.113 (3), p.1455-1470</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</citedby><cites>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07313-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07313-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kuo, Fang-Chang</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Wang, Hwang-Cheng</creatorcontrib><creatorcontrib>Lin, Wen-Jun</creatorcontrib><creatorcontrib>Tseng, Chih-Cheng</creatorcontrib><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</description><subject>Algorithms</subject><subject>Cellular communication</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Multi-armed bandit problems</subject><subject>Networks</subject><subject>Performance enhancement</subject><subject>Power control</subject><subject>Power management</subject><subject>Resource allocation</subject><subject>Reuse</subject><subject>Signal,Image and Speech Processing</subject><subject>Wireless networks</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62hyM00yyz58QUXxAe5CmodOmU5qMqX035s6gjtXl8s537ncg9A5JZeUEHGVKAUhMAGCiWCUYThAAzoSgCUr3w_RgFRQYQ4UjtFJSktCMlbBAL3MYFY8uxQ20bhi3DTB6K4ObbGtu8_iKWxdLKah7WJoiolOzhZZe9g0XY3Xjd5ltV90XGVtoltbd6foyOsmubPfOURvN9ev0zs8f7y9n47n2LCR7DDzsqScGb_QQnBOWCmBl9bIBaGe-pExrALOpR5xQbglcmGM8VZab62obMmG6KLPXcfwtXGpU8v8RptPKiihpECkgOyC3mViSCk6r9axXum4U5SofXmqL0_l8tRPeWoPsR5K2dx-uPgX_Q_1DZIhcTg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kuo, Fang-Chang</creator><creator>Schindelhauer, Christian</creator><creator>Wang, Hwang-Cheng</creator><creator>Lin, Wen-Jun</creator><creator>Tseng, Chih-Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><author>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cellular communication</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Multi-armed bandit problems</topic><topic>Networks</topic><topic>Performance enhancement</topic><topic>Power control</topic><topic>Power management</topic><topic>Resource allocation</topic><topic>Reuse</topic><topic>Signal,Image and Speech Processing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Fang-Chang</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Wang, Hwang-Cheng</creatorcontrib><creatorcontrib>Lin, Wen-Jun</creatorcontrib><creatorcontrib>Tseng, Chih-Cheng</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Fang-Chang</au><au>Schindelhauer, Christian</au><au>Wang, Hwang-Cheng</au><au>Lin, Wen-Jun</au><au>Tseng, Chih-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>113</volume><issue>3</issue><spage>1455</spage><epage>1470</epage><pages>1455-1470</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07313-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2020-08, Vol.113 (3), p.1455-1470 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2424120872 |
source | SpringerLink Journals |
subjects | Algorithms Cellular communication Communications Engineering Computer Communication Networks Computer simulation Engineering Machine learning Multi-armed bandit problems Networks Performance enhancement Power control Power management Resource allocation Reuse Signal,Image and Speech Processing Wireless networks |
title | D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D2D%20Resource%20Allocation%20with%20Power%20Control%20Based%20on%20Multi-player%20Multi-armed%20Bandit&rft.jtitle=Wireless%20personal%20communications&rft.au=Kuo,%20Fang-Chang&rft.date=2020-08-01&rft.volume=113&rft.issue=3&rft.spage=1455&rft.epage=1470&rft.pages=1455-1470&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07313-2&rft_dat=%3Cproquest_cross%3E2424120872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424120872&rft_id=info:pmid/&rfr_iscdi=true |