D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit

Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2020-08, Vol.113 (3), p.1455-1470
Hauptverfasser: Kuo, Fang-Chang, Schindelhauer, Christian, Wang, Hwang-Cheng, Lin, Wen-Jun, Tseng, Chih-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1470
container_issue 3
container_start_page 1455
container_title Wireless personal communications
container_volume 113
creator Kuo, Fang-Chang
Schindelhauer, Christian
Wang, Hwang-Cheng
Lin, Wen-Jun
Tseng, Chih-Cheng
description Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.
doi_str_mv 10.1007/s11277-020-07313-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424120872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424120872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62hyM00yyz58QUXxAe5CmodOmU5qMqX035s6gjtXl8s537ncg9A5JZeUEHGVKAUhMAGCiWCUYThAAzoSgCUr3w_RgFRQYQ4UjtFJSktCMlbBAL3MYFY8uxQ20bhi3DTB6K4ObbGtu8_iKWxdLKah7WJoiolOzhZZe9g0XY3Xjd5ltV90XGVtoltbd6foyOsmubPfOURvN9ev0zs8f7y9n47n2LCR7DDzsqScGb_QQnBOWCmBl9bIBaGe-pExrALOpR5xQbglcmGM8VZab62obMmG6KLPXcfwtXGpU8v8RptPKiihpECkgOyC3mViSCk6r9axXum4U5SofXmqL0_l8tRPeWoPsR5K2dx-uPgX_Q_1DZIhcTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424120872</pqid></control><display><type>article</type><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><source>SpringerLink Journals</source><creator>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</creator><creatorcontrib>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</creatorcontrib><description>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-020-07313-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cellular communication ; Communications Engineering ; Computer Communication Networks ; Computer simulation ; Engineering ; Machine learning ; Multi-armed bandit problems ; Networks ; Performance enhancement ; Power control ; Power management ; Resource allocation ; Reuse ; Signal,Image and Speech Processing ; Wireless networks</subject><ispartof>Wireless personal communications, 2020-08, Vol.113 (3), p.1455-1470</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</citedby><cites>FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-020-07313-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-020-07313-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kuo, Fang-Chang</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Wang, Hwang-Cheng</creatorcontrib><creatorcontrib>Lin, Wen-Jun</creatorcontrib><creatorcontrib>Tseng, Chih-Cheng</creatorcontrib><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</description><subject>Algorithms</subject><subject>Cellular communication</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Multi-armed bandit problems</subject><subject>Networks</subject><subject>Performance enhancement</subject><subject>Power control</subject><subject>Power management</subject><subject>Resource allocation</subject><subject>Reuse</subject><subject>Signal,Image and Speech Processing</subject><subject>Wireless networks</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62hyM00yyz58QUXxAe5CmodOmU5qMqX035s6gjtXl8s537ncg9A5JZeUEHGVKAUhMAGCiWCUYThAAzoSgCUr3w_RgFRQYQ4UjtFJSktCMlbBAL3MYFY8uxQ20bhi3DTB6K4ObbGtu8_iKWxdLKah7WJoiolOzhZZe9g0XY3Xjd5ltV90XGVtoltbd6foyOsmubPfOURvN9ev0zs8f7y9n47n2LCR7DDzsqScGb_QQnBOWCmBl9bIBaGe-pExrALOpR5xQbglcmGM8VZab62obMmG6KLPXcfwtXGpU8v8RptPKiihpECkgOyC3mViSCk6r9axXum4U5SofXmqL0_l8tRPeWoPsR5K2dx-uPgX_Q_1DZIhcTg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kuo, Fang-Chang</creator><creator>Schindelhauer, Christian</creator><creator>Wang, Hwang-Cheng</creator><creator>Lin, Wen-Jun</creator><creator>Tseng, Chih-Cheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</title><author>Kuo, Fang-Chang ; Schindelhauer, Christian ; Wang, Hwang-Cheng ; Lin, Wen-Jun ; Tseng, Chih-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-3f84163cfba77660348264dc8b01f1f5cc392668a56706d08bcccfd8dfdd79d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cellular communication</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Multi-armed bandit problems</topic><topic>Networks</topic><topic>Performance enhancement</topic><topic>Power control</topic><topic>Power management</topic><topic>Resource allocation</topic><topic>Reuse</topic><topic>Signal,Image and Speech Processing</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Fang-Chang</creatorcontrib><creatorcontrib>Schindelhauer, Christian</creatorcontrib><creatorcontrib>Wang, Hwang-Cheng</creatorcontrib><creatorcontrib>Lin, Wen-Jun</creatorcontrib><creatorcontrib>Tseng, Chih-Cheng</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Fang-Chang</au><au>Schindelhauer, Christian</au><au>Wang, Hwang-Cheng</au><au>Lin, Wen-Jun</au><au>Tseng, Chih-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>113</volume><issue>3</issue><spage>1455</spage><epage>1470</epage><pages>1455-1470</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Device-to-device (D2D) communication is defined as the direct communication between two D2D user equipments (DUEs) without traversing the evolved NodeB of 5G networks. In the underlay mode of resource reuse, DUEs and cellular user equipments share resource blocks to improve system throughput by reusing the spectrum. In order to further enhance the performance, an extended version of reinforcement learning algorithm, Multi-Player Multi-Armed Bandit, is employed to control the transmission power of the DUEs to reduce the interference induced by resource sharing. Three learning strategies, namely Epsilon-first, Epsilon-greedy, Upper-Confidence-Bound, are applied. Simulation results show that the proposed method improves performance in terms of the average transmission power of D2D pairs, the ratio of unallocated D2D pairs, energy efficiency, and total throughput.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-020-07313-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-6212
ispartof Wireless personal communications, 2020-08, Vol.113 (3), p.1455-1470
issn 0929-6212
1572-834X
language eng
recordid cdi_proquest_journals_2424120872
source SpringerLink Journals
subjects Algorithms
Cellular communication
Communications Engineering
Computer Communication Networks
Computer simulation
Engineering
Machine learning
Multi-armed bandit problems
Networks
Performance enhancement
Power control
Power management
Resource allocation
Reuse
Signal,Image and Speech Processing
Wireless networks
title D2D Resource Allocation with Power Control Based on Multi-player Multi-armed Bandit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D2D%20Resource%20Allocation%20with%20Power%20Control%20Based%20on%20Multi-player%20Multi-armed%20Bandit&rft.jtitle=Wireless%20personal%20communications&rft.au=Kuo,%20Fang-Chang&rft.date=2020-08-01&rft.volume=113&rft.issue=3&rft.spage=1455&rft.epage=1470&rft.pages=1455-1470&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-020-07313-2&rft_dat=%3Cproquest_cross%3E2424120872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424120872&rft_id=info:pmid/&rfr_iscdi=true