Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization
Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-07, Vol.12 (27), p.14549-14559 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14559 |
---|---|
container_issue | 27 |
container_start_page | 14549 |
container_title | Nanoscale |
container_volume | 12 |
creator | Montgomery, Matthew J Sugak, Nikita V Yang, Ke R Rogers, James M Kube, Sebastian A Ratinov, Anthony C Schroers, Jan Batista, Victor S Pfefferle, Lisa D |
description | Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO
2
has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper(
ii
) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets.
Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material. |
doi_str_mv | 10.1039/d0nr02208j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424050141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419715836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</originalsourceid><addsrcrecordid>eNp9kctLAzEQxoMoqNWLdyHipQqree7jKK1PioL2viTZrN2yTdY8QP3r3bVSwYOn-YbvN8PwDQBHGF1gRIvLChmHCEH5cgvsEcRQQmlGtjc6Zbtg3_slQmlBU7oHzIteNcqaKqpgXRJssmlgcML4JjTWwMZAMoXKdp124zNo35tKQyOM9Qutg4dh4Wx8XUAfXS2U7mtbR5fU0ahhXrTNpxjEAdipRev14U8dgfnN9Xxyl8yebu8nV7NEUYZCwnFVcS4zqfM0l5wLyWRGecWVTKXWjOKCqxoXihQUpVLlileFUDXhjGoi6QiM12s7Z9-i9qFcNV7pthVG2-hLwnCRYZ73EYzA6R90aaPrLx4owhBHmOGeOl9Tylnvna7LzjUr4T5KjMoh-XKKHp-_k3_o4eM17LzacL-f6f2T__yyq2r6BScJjbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424050141</pqid></control><display><type>article</type><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</creator><creatorcontrib>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</creatorcontrib><description>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO
2
has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper(
ii
) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets.
Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02208j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Conductors ; Copper compounds ; Copper oxides ; Crystal structure ; Hydrogen sulfide ; Hydroxyl groups ; Material properties ; Morphology ; Nanomaterials ; Nanosheets ; Sulfur ; Titanium dioxide ; Transition metal oxides ; Valence band ; Zinc oxide</subject><ispartof>Nanoscale, 2020-07, Vol.12 (27), p.14549-14559</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</citedby><cites>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</cites><orcidid>0000-0002-9307-2139 ; 0000-0001-8167-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Montgomery, Matthew J</creatorcontrib><creatorcontrib>Sugak, Nikita V</creatorcontrib><creatorcontrib>Yang, Ke R</creatorcontrib><creatorcontrib>Rogers, James M</creatorcontrib><creatorcontrib>Kube, Sebastian A</creatorcontrib><creatorcontrib>Ratinov, Anthony C</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><title>Nanoscale</title><description>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO
2
has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper(
ii
) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets.
Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</description><subject>Conductors</subject><subject>Copper compounds</subject><subject>Copper oxides</subject><subject>Crystal structure</subject><subject>Hydrogen sulfide</subject><subject>Hydroxyl groups</subject><subject>Material properties</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Sulfur</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Valence band</subject><subject>Zinc oxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctLAzEQxoMoqNWLdyHipQqree7jKK1PioL2viTZrN2yTdY8QP3r3bVSwYOn-YbvN8PwDQBHGF1gRIvLChmHCEH5cgvsEcRQQmlGtjc6Zbtg3_slQmlBU7oHzIteNcqaKqpgXRJssmlgcML4JjTWwMZAMoXKdp124zNo35tKQyOM9Qutg4dh4Wx8XUAfXS2U7mtbR5fU0ahhXrTNpxjEAdipRev14U8dgfnN9Xxyl8yebu8nV7NEUYZCwnFVcS4zqfM0l5wLyWRGecWVTKXWjOKCqxoXihQUpVLlileFUDXhjGoi6QiM12s7Z9-i9qFcNV7pthVG2-hLwnCRYZ73EYzA6R90aaPrLx4owhBHmOGeOl9Tylnvna7LzjUr4T5KjMoh-XKKHp-_k3_o4eM17LzacL-f6f2T__yyq2r6BScJjbE</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Montgomery, Matthew J</creator><creator>Sugak, Nikita V</creator><creator>Yang, Ke R</creator><creator>Rogers, James M</creator><creator>Kube, Sebastian A</creator><creator>Ratinov, Anthony C</creator><creator>Schroers, Jan</creator><creator>Batista, Victor S</creator><creator>Pfefferle, Lisa D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9307-2139</orcidid><orcidid>https://orcid.org/0000-0001-8167-4178</orcidid></search><sort><creationdate>20200721</creationdate><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><author>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conductors</topic><topic>Copper compounds</topic><topic>Copper oxides</topic><topic>Crystal structure</topic><topic>Hydrogen sulfide</topic><topic>Hydroxyl groups</topic><topic>Material properties</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Sulfur</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Valence band</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Matthew J</creatorcontrib><creatorcontrib>Sugak, Nikita V</creatorcontrib><creatorcontrib>Yang, Ke R</creatorcontrib><creatorcontrib>Rogers, James M</creatorcontrib><creatorcontrib>Kube, Sebastian A</creatorcontrib><creatorcontrib>Ratinov, Anthony C</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Matthew J</au><au>Sugak, Nikita V</au><au>Yang, Ke R</au><au>Rogers, James M</au><au>Kube, Sebastian A</au><au>Ratinov, Anthony C</au><au>Schroers, Jan</au><au>Batista, Victor S</au><au>Pfefferle, Lisa D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</atitle><jtitle>Nanoscale</jtitle><date>2020-07-21</date><risdate>2020</risdate><volume>12</volume><issue>27</issue><spage>14549</spage><epage>14559</epage><pages>14549-14559</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO
2
has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper(
ii
) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets.
Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr02208j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9307-2139</orcidid><orcidid>https://orcid.org/0000-0001-8167-4178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-07, Vol.12 (27), p.14549-14559 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2424050141 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Conductors Copper compounds Copper oxides Crystal structure Hydrogen sulfide Hydroxyl groups Material properties Morphology Nanomaterials Nanosheets Sulfur Titanium dioxide Transition metal oxides Valence band Zinc oxide |
title | Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor-to-conductor%20transition%20in%202D%20copper()%20oxide%20nanosheets%20through%20surface%20sulfur-functionalization&rft.jtitle=Nanoscale&rft.au=Montgomery,%20Matthew%20J&rft.date=2020-07-21&rft.volume=12&rft.issue=27&rft.spage=14549&rft.epage=14559&rft.pages=14549-14559&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02208j&rft_dat=%3Cproquest_cross%3E2419715836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424050141&rft_id=info:pmid/&rfr_iscdi=true |