Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization

Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-07, Vol.12 (27), p.14549-14559
Hauptverfasser: Montgomery, Matthew J, Sugak, Nikita V, Yang, Ke R, Rogers, James M, Kube, Sebastian A, Ratinov, Anthony C, Schroers, Jan, Batista, Victor S, Pfefferle, Lisa D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14559
container_issue 27
container_start_page 14549
container_title Nanoscale
container_volume 12
creator Montgomery, Matthew J
Sugak, Nikita V
Yang, Ke R
Rogers, James M
Kube, Sebastian A
Ratinov, Anthony C
Schroers, Jan
Batista, Victor S
Pfefferle, Lisa D
description Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper( ii ) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets. Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.
doi_str_mv 10.1039/d0nr02208j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2424050141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419715836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</originalsourceid><addsrcrecordid>eNp9kctLAzEQxoMoqNWLdyHipQqree7jKK1PioL2viTZrN2yTdY8QP3r3bVSwYOn-YbvN8PwDQBHGF1gRIvLChmHCEH5cgvsEcRQQmlGtjc6Zbtg3_slQmlBU7oHzIteNcqaKqpgXRJssmlgcML4JjTWwMZAMoXKdp124zNo35tKQyOM9Qutg4dh4Wx8XUAfXS2U7mtbR5fU0ahhXrTNpxjEAdipRev14U8dgfnN9Xxyl8yebu8nV7NEUYZCwnFVcS4zqfM0l5wLyWRGecWVTKXWjOKCqxoXihQUpVLlileFUDXhjGoi6QiM12s7Z9-i9qFcNV7pthVG2-hLwnCRYZ73EYzA6R90aaPrLx4owhBHmOGeOl9Tylnvna7LzjUr4T5KjMoh-XKKHp-_k3_o4eM17LzacL-f6f2T__yyq2r6BScJjbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424050141</pqid></control><display><type>article</type><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</creator><creatorcontrib>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</creatorcontrib><description>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper( ii ) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets. Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr02208j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Conductors ; Copper compounds ; Copper oxides ; Crystal structure ; Hydrogen sulfide ; Hydroxyl groups ; Material properties ; Morphology ; Nanomaterials ; Nanosheets ; Sulfur ; Titanium dioxide ; Transition metal oxides ; Valence band ; Zinc oxide</subject><ispartof>Nanoscale, 2020-07, Vol.12 (27), p.14549-14559</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</citedby><cites>FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</cites><orcidid>0000-0002-9307-2139 ; 0000-0001-8167-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Montgomery, Matthew J</creatorcontrib><creatorcontrib>Sugak, Nikita V</creatorcontrib><creatorcontrib>Yang, Ke R</creatorcontrib><creatorcontrib>Rogers, James M</creatorcontrib><creatorcontrib>Kube, Sebastian A</creatorcontrib><creatorcontrib>Ratinov, Anthony C</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><title>Nanoscale</title><description>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper( ii ) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets. Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</description><subject>Conductors</subject><subject>Copper compounds</subject><subject>Copper oxides</subject><subject>Crystal structure</subject><subject>Hydrogen sulfide</subject><subject>Hydroxyl groups</subject><subject>Material properties</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Sulfur</subject><subject>Titanium dioxide</subject><subject>Transition metal oxides</subject><subject>Valence band</subject><subject>Zinc oxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctLAzEQxoMoqNWLdyHipQqree7jKK1PioL2viTZrN2yTdY8QP3r3bVSwYOn-YbvN8PwDQBHGF1gRIvLChmHCEH5cgvsEcRQQmlGtjc6Zbtg3_slQmlBU7oHzIteNcqaKqpgXRJssmlgcML4JjTWwMZAMoXKdp124zNo35tKQyOM9Qutg4dh4Wx8XUAfXS2U7mtbR5fU0ahhXrTNpxjEAdipRev14U8dgfnN9Xxyl8yebu8nV7NEUYZCwnFVcS4zqfM0l5wLyWRGecWVTKXWjOKCqxoXihQUpVLlileFUDXhjGoi6QiM12s7Z9-i9qFcNV7pthVG2-hLwnCRYZ73EYzA6R90aaPrLx4owhBHmOGeOl9Tylnvna7LzjUr4T5KjMoh-XKKHp-_k3_o4eM17LzacL-f6f2T__yyq2r6BScJjbE</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Montgomery, Matthew J</creator><creator>Sugak, Nikita V</creator><creator>Yang, Ke R</creator><creator>Rogers, James M</creator><creator>Kube, Sebastian A</creator><creator>Ratinov, Anthony C</creator><creator>Schroers, Jan</creator><creator>Batista, Victor S</creator><creator>Pfefferle, Lisa D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9307-2139</orcidid><orcidid>https://orcid.org/0000-0001-8167-4178</orcidid></search><sort><creationdate>20200721</creationdate><title>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</title><author>Montgomery, Matthew J ; Sugak, Nikita V ; Yang, Ke R ; Rogers, James M ; Kube, Sebastian A ; Ratinov, Anthony C ; Schroers, Jan ; Batista, Victor S ; Pfefferle, Lisa D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-51dd55b7be868b55ab4b735d5cb6bee43195cf19c29306bc8c5d9acf2543e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Conductors</topic><topic>Copper compounds</topic><topic>Copper oxides</topic><topic>Crystal structure</topic><topic>Hydrogen sulfide</topic><topic>Hydroxyl groups</topic><topic>Material properties</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Sulfur</topic><topic>Titanium dioxide</topic><topic>Transition metal oxides</topic><topic>Valence band</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Matthew J</creatorcontrib><creatorcontrib>Sugak, Nikita V</creatorcontrib><creatorcontrib>Yang, Ke R</creatorcontrib><creatorcontrib>Rogers, James M</creatorcontrib><creatorcontrib>Kube, Sebastian A</creatorcontrib><creatorcontrib>Ratinov, Anthony C</creatorcontrib><creatorcontrib>Schroers, Jan</creatorcontrib><creatorcontrib>Batista, Victor S</creatorcontrib><creatorcontrib>Pfefferle, Lisa D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Matthew J</au><au>Sugak, Nikita V</au><au>Yang, Ke R</au><au>Rogers, James M</au><au>Kube, Sebastian A</au><au>Ratinov, Anthony C</au><au>Schroers, Jan</au><au>Batista, Victor S</au><au>Pfefferle, Lisa D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization</atitle><jtitle>Nanoscale</jtitle><date>2020-07-21</date><risdate>2020</risdate><volume>12</volume><issue>27</issue><spage>14549</spage><epage>14559</epage><pages>14549-14559</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Functionalization is a widely-used strategy to modulate and optimize the properties of materials towards various applications, including sensing, catalysis, and energy generation. While the influence of sulfur-functionalization of carbon materials and oxides like ZnO and TiO 2 has been studied, far less research has been devoted to analyzing sulfur-functionalization of CuO and other transition metal oxide nanomaterials. Here, we report sulfur-functionalization of copper( ii ) oxide nanosheets synthesized by using a soft-templating procedure, with sulfur-addition based on hydrogen sulfide gas as a source. The resulting sulfur-functionalization does not change the overall crystal structure and morphology of the CuO nanosheets, but leads to a decrease in surface hydroxyl groups. Sulfur induces a semiconductor-to-conductor state transition of the CuO nanosheets, which is supported by computational modeling. The metallic transition results from shifting of the Fermi level into the valence band due to formation of Cu-S bonds on the surface of the CuO nanosheets. Sulfur-functionalization leads to surface modification of CuO nanosheets by Cu-S structures, which imparts conductive behavior to the material.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0nr02208j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9307-2139</orcidid><orcidid>https://orcid.org/0000-0001-8167-4178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2020-07, Vol.12 (27), p.14549-14559
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2424050141
source Royal Society Of Chemistry Journals 2008-
subjects Conductors
Copper compounds
Copper oxides
Crystal structure
Hydrogen sulfide
Hydroxyl groups
Material properties
Morphology
Nanomaterials
Nanosheets
Sulfur
Titanium dioxide
Transition metal oxides
Valence band
Zinc oxide
title Semiconductor-to-conductor transition in 2D copper() oxide nanosheets through surface sulfur-functionalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor-to-conductor%20transition%20in%202D%20copper()%20oxide%20nanosheets%20through%20surface%20sulfur-functionalization&rft.jtitle=Nanoscale&rft.au=Montgomery,%20Matthew%20J&rft.date=2020-07-21&rft.volume=12&rft.issue=27&rft.spage=14549&rft.epage=14559&rft.pages=14549-14559&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr02208j&rft_dat=%3Cproquest_cross%3E2419715836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424050141&rft_id=info:pmid/&rfr_iscdi=true