Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films

This work sought to formulate, analyze, model, and optimize Arracacha ( Arracacha xanthorrhiza ) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymers and the environment 2020-08, Vol.28 (8), p.2253-2262
Hauptverfasser: Garcia, Omar R., Pinzón, Magda I., Villa, Cristian C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2262
container_issue 8
container_start_page 2253
container_title Journal of polymers and the environment
container_volume 28
creator Garcia, Omar R.
Pinzón, Magda I.
Villa, Cristian C.
description This work sought to formulate, analyze, model, and optimize Arracacha ( Arracacha xanthorrhiza ) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three levels (starch 3–4%; glycerol 0.75–1.25%; chitosan 1–2%) to determine the individual and interactive effects of these parameters on the mechanical properties (tensile TS, and elongation at break, %E) and barrier properties (water vapor permeability, WVP) of the films. The results were analyzed by using the Pareto analysis of variance (ANOVA). The descriptive response surfaces were obtained and second-order polynomial models were developed for each response evaluated, which showed good fit to the experimental data with high determination coefficient (R 2  > 0.95), finding relation between the experimental and predicted values. The optimal film formulation, according to the desirability function by Derringer, with the aim of minimizing the SS and WVP values and maximizing the %E values, was obtained with that containing 4% starch, 1.11% glycerol, and 2% chitosan, presenting low stress strain and permeability and high flexibility, conditions favorable for the desired application.
doi_str_mv 10.1007/s10924-020-01765-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423969586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423969586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-52354a7b84ee4bf1f2862d79bdc6c882b5223603bd4b65de4aa3e1e5b53a32ac3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhoMoWKt_wNOC59X9TnJsi1XBoqCel9nNpt2SZuNueui_N20Eb55mYJ73hXmy7JaSe0pI_pAoKZnAhBFMaK4kJmfZhMqc4aKk5flxVwozKfhldpXSlhBSDsFJtp-10BySTwjaCq1C5RrfrlGo0crZDbTeQnM6zSFG7yJ6j6FzsfcuHaFZjGBhANFHD9Fu8GLj-5CgRYuw60LyvUNzP7SuI1RgGoeWvtml6-yihia5m985zb6Wj5-LZ_z69vSymL1iy0neY8m4FJCbQjgnTE1rVihW5aWprLJFwYxkjCvCTSWMkpUTANxRJ43kwBlYPs3uxt4uhu-9S73ehn0cPk6aCcZLVcpCDRQbKRtDStHVuot-B_GgKdFHvXrUqwe9-qRXkyHEx1Aa4Hbt4l_1P6kf72p-Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423969586</pqid></control><display><type>article</type><title>Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films</title><source>SpringerLink Journals - AutoHoldings</source><creator>Garcia, Omar R. ; Pinzón, Magda I. ; Villa, Cristian C.</creator><creatorcontrib>Garcia, Omar R. ; Pinzón, Magda I. ; Villa, Cristian C.</creatorcontrib><description>This work sought to formulate, analyze, model, and optimize Arracacha ( Arracacha xanthorrhiza ) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three levels (starch 3–4%; glycerol 0.75–1.25%; chitosan 1–2%) to determine the individual and interactive effects of these parameters on the mechanical properties (tensile TS, and elongation at break, %E) and barrier properties (water vapor permeability, WVP) of the films. The results were analyzed by using the Pareto analysis of variance (ANOVA). The descriptive response surfaces were obtained and second-order polynomial models were developed for each response evaluated, which showed good fit to the experimental data with high determination coefficient (R 2  &gt; 0.95), finding relation between the experimental and predicted values. The optimal film formulation, according to the desirability function by Derringer, with the aim of minimizing the SS and WVP values and maximizing the %E values, was obtained with that containing 4% starch, 1.11% glycerol, and 2% chitosan, presenting low stress strain and permeability and high flexibility, conditions favorable for the desired application.</description><identifier>ISSN: 1566-2543</identifier><identifier>EISSN: 1572-8919</identifier><identifier>DOI: 10.1007/s10924-020-01765-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biodegradability ; Biodegradation ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Elongation ; Environmental Chemistry ; Environmental Engineering/Biotechnology ; Glycerol ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mechanical properties ; Optimization ; Original Paper ; Pareto analysis ; Permeability ; Polymer Sciences ; Polynomials ; Response surface methodology ; Starch ; Variance analysis ; Water vapor</subject><ispartof>Journal of polymers and the environment, 2020-08, Vol.28 (8), p.2253-2262</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-52354a7b84ee4bf1f2862d79bdc6c882b5223603bd4b65de4aa3e1e5b53a32ac3</cites><orcidid>0000-0001-6530-2569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10924-020-01765-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10924-020-01765-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Garcia, Omar R.</creatorcontrib><creatorcontrib>Pinzón, Magda I.</creatorcontrib><creatorcontrib>Villa, Cristian C.</creatorcontrib><title>Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films</title><title>Journal of polymers and the environment</title><addtitle>J Polym Environ</addtitle><description>This work sought to formulate, analyze, model, and optimize Arracacha ( Arracacha xanthorrhiza ) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three levels (starch 3–4%; glycerol 0.75–1.25%; chitosan 1–2%) to determine the individual and interactive effects of these parameters on the mechanical properties (tensile TS, and elongation at break, %E) and barrier properties (water vapor permeability, WVP) of the films. The results were analyzed by using the Pareto analysis of variance (ANOVA). The descriptive response surfaces were obtained and second-order polynomial models were developed for each response evaluated, which showed good fit to the experimental data with high determination coefficient (R 2  &gt; 0.95), finding relation between the experimental and predicted values. The optimal film formulation, according to the desirability function by Derringer, with the aim of minimizing the SS and WVP values and maximizing the %E values, was obtained with that containing 4% starch, 1.11% glycerol, and 2% chitosan, presenting low stress strain and permeability and high flexibility, conditions favorable for the desired application.</description><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Elongation</subject><subject>Environmental Chemistry</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Glycerol</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Pareto analysis</subject><subject>Permeability</subject><subject>Polymer Sciences</subject><subject>Polynomials</subject><subject>Response surface methodology</subject><subject>Starch</subject><subject>Variance analysis</subject><subject>Water vapor</subject><issn>1566-2543</issn><issn>1572-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1Lw0AQhoMoWKt_wNOC59X9TnJsi1XBoqCel9nNpt2SZuNueui_N20Eb55mYJ73hXmy7JaSe0pI_pAoKZnAhBFMaK4kJmfZhMqc4aKk5flxVwozKfhldpXSlhBSDsFJtp-10BySTwjaCq1C5RrfrlGo0crZDbTeQnM6zSFG7yJ6j6FzsfcuHaFZjGBhANFHD9Fu8GLj-5CgRYuw60LyvUNzP7SuI1RgGoeWvtml6-yihia5m985zb6Wj5-LZ_z69vSymL1iy0neY8m4FJCbQjgnTE1rVihW5aWprLJFwYxkjCvCTSWMkpUTANxRJ43kwBlYPs3uxt4uhu-9S73ehn0cPk6aCcZLVcpCDRQbKRtDStHVuot-B_GgKdFHvXrUqwe9-qRXkyHEx1Aa4Hbt4l_1P6kf72p-Vg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Garcia, Omar R.</creator><creator>Pinzón, Magda I.</creator><creator>Villa, Cristian C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6530-2569</orcidid></search><sort><creationdate>20200801</creationdate><title>Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films</title><author>Garcia, Omar R. ; Pinzón, Magda I. ; Villa, Cristian C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-52354a7b84ee4bf1f2862d79bdc6c882b5223603bd4b65de4aa3e1e5b53a32ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Elongation</topic><topic>Environmental Chemistry</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Glycerol</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Pareto analysis</topic><topic>Permeability</topic><topic>Polymer Sciences</topic><topic>Polynomials</topic><topic>Response surface methodology</topic><topic>Starch</topic><topic>Variance analysis</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Omar R.</creatorcontrib><creatorcontrib>Pinzón, Magda I.</creatorcontrib><creatorcontrib>Villa, Cristian C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of polymers and the environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Omar R.</au><au>Pinzón, Magda I.</au><au>Villa, Cristian C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films</atitle><jtitle>Journal of polymers and the environment</jtitle><stitle>J Polym Environ</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>2253</spage><epage>2262</epage><pages>2253-2262</pages><issn>1566-2543</issn><eissn>1572-8919</eissn><abstract>This work sought to formulate, analyze, model, and optimize Arracacha ( Arracacha xanthorrhiza ) starch-chitosan based biodegradable films to assess their use as food coating. To study these films, prepared through the casting technique, a Box–Behnken design was used with three factors at three levels (starch 3–4%; glycerol 0.75–1.25%; chitosan 1–2%) to determine the individual and interactive effects of these parameters on the mechanical properties (tensile TS, and elongation at break, %E) and barrier properties (water vapor permeability, WVP) of the films. The results were analyzed by using the Pareto analysis of variance (ANOVA). The descriptive response surfaces were obtained and second-order polynomial models were developed for each response evaluated, which showed good fit to the experimental data with high determination coefficient (R 2  &gt; 0.95), finding relation between the experimental and predicted values. The optimal film formulation, according to the desirability function by Derringer, with the aim of minimizing the SS and WVP values and maximizing the %E values, was obtained with that containing 4% starch, 1.11% glycerol, and 2% chitosan, presenting low stress strain and permeability and high flexibility, conditions favorable for the desired application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10924-020-01765-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6530-2569</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1566-2543
ispartof Journal of polymers and the environment, 2020-08, Vol.28 (8), p.2253-2262
issn 1566-2543
1572-8919
language eng
recordid cdi_proquest_journals_2423969586
source SpringerLink Journals - AutoHoldings
subjects Biodegradability
Biodegradation
Chemistry
Chemistry and Materials Science
Chitosan
Elongation
Environmental Chemistry
Environmental Engineering/Biotechnology
Glycerol
Industrial Chemistry/Chemical Engineering
Materials Science
Mechanical properties
Optimization
Original Paper
Pareto analysis
Permeability
Polymer Sciences
Polynomials
Response surface methodology
Starch
Variance analysis
Water vapor
title Analysis and Modeling of Mechanical and Barrier Properties of Arracacha Starch-Chitosan Composite Biodegradable Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Modeling%20of%20Mechanical%20and%20Barrier%20Properties%20of%20Arracacha%20Starch-Chitosan%20Composite%20Biodegradable%20Films&rft.jtitle=Journal%20of%20polymers%20and%20the%20environment&rft.au=Garcia,%20Omar%20R.&rft.date=2020-08-01&rft.volume=28&rft.issue=8&rft.spage=2253&rft.epage=2262&rft.pages=2253-2262&rft.issn=1566-2543&rft.eissn=1572-8919&rft_id=info:doi/10.1007/s10924-020-01765-0&rft_dat=%3Cproquest_cross%3E2423969586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423969586&rft_id=info:pmid/&rfr_iscdi=true