Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation

The role of the Indian Ocean sea surface temperature (SST) in the rapid phase transition of the El Niño–Southern Oscillation (ENSO) has received much attention over the last few decades. However, the distinctive role of the Indian Ocean Dipole (IOD) and its underlying dynamics in controlling the rap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied climatology 2020-08, Vol.141 (3-4), p.999-1007
Hauptverfasser: Yoo, Jae-Hwi, Moon, Suyeon, Ha, Kyung-Ja, Yun, Kyung-Sook, Lee, June-Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 3-4
container_start_page 999
container_title Theoretical and applied climatology
container_volume 141
creator Yoo, Jae-Hwi
Moon, Suyeon
Ha, Kyung-Ja
Yun, Kyung-Sook
Lee, June-Yi
description The role of the Indian Ocean sea surface temperature (SST) in the rapid phase transition of the El Niño–Southern Oscillation (ENSO) has received much attention over the last few decades. However, the distinctive role of the Indian Ocean Dipole (IOD) and its underlying dynamics in controlling the rapid transition remains debatable, since it is difficult to isolate the sole effect of the IOD using observation. By conducting model experiments, this study demonstrated that the positive IOD cases could contribute to the rapid phase transition from El Niño to La Niña without the assistance of the Indian Ocean Basin–wide Mode. The westerly wind anomalies over the tropical western Pacific induced not only the El Niño phase via descending Kelvin waves in the equatorial eastern Pacific but also the SST cooling in the off-equatorial western Pacific via ascending Rossby waves. The positive feedback between the upwelling Rossby waves and cool SST maintained the Philippine Sea anticyclone anomalies. The accompanying easterly wind anomalies over the tropical western Pacific triggered upwelling oceanic Kelvin waves, leading to the occurrence of La Niña. This study shows the possible role of the IOD in the rapid phase transition of ENSO.
doi_str_mv 10.1007/s00704-020-03265-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423960650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423960650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8235130ab277dad5e3e77637a3f20cc528e0419bb8f69b7cc657b437cd92c6ab3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBsmdmInS1QKVKroApDYWY7jUFchDna66I47cBLOwE04CW4DYsfmjzTz_h_pI3SawHkCIC5CFEgJUCDAKM8I30OjJGUpSdOc7aMRJEIQUeRPh-gohBUAUM7FCG0mKpiAa-dxvzQ4uMZgU9dG99jVu9Wsraxq8UKbqFe22xK23Z286myFu2WMwL1XbbC9de2vcdrgO_v54b7e3u_dOm58TAnaNo3aYsfooFZNMCc_c4wer6cPk1syX9zMJpdzohlnPckpyxIGqqRCVKrKDDNCcCYUqylondHcQJoUZZnXvCiF1jwTZcqErgqquSrZGJ0NuZ13r2sTerlya9_Gl5KmlBUceAaRogOlvQvBm1p23r4ov5EJyG3FcqhYxorlrmLJo4kNphDh9tn4v-h_XN_2roB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423960650</pqid></control><display><type>article</type><title>Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yoo, Jae-Hwi ; Moon, Suyeon ; Ha, Kyung-Ja ; Yun, Kyung-Sook ; Lee, June-Yi</creator><creatorcontrib>Yoo, Jae-Hwi ; Moon, Suyeon ; Ha, Kyung-Ja ; Yun, Kyung-Sook ; Lee, June-Yi</creatorcontrib><description>The role of the Indian Ocean sea surface temperature (SST) in the rapid phase transition of the El Niño–Southern Oscillation (ENSO) has received much attention over the last few decades. However, the distinctive role of the Indian Ocean Dipole (IOD) and its underlying dynamics in controlling the rapid transition remains debatable, since it is difficult to isolate the sole effect of the IOD using observation. By conducting model experiments, this study demonstrated that the positive IOD cases could contribute to the rapid phase transition from El Niño to La Niña without the assistance of the Indian Ocean Basin–wide Mode. The westerly wind anomalies over the tropical western Pacific induced not only the El Niño phase via descending Kelvin waves in the equatorial eastern Pacific but also the SST cooling in the off-equatorial western Pacific via ascending Rossby waves. The positive feedback between the upwelling Rossby waves and cool SST maintained the Philippine Sea anticyclone anomalies. The accompanying easterly wind anomalies over the tropical western Pacific triggered upwelling oceanic Kelvin waves, leading to the occurrence of La Niña. This study shows the possible role of the IOD in the rapid phase transition of ENSO.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-020-03265-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anomalies ; Anticyclones ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate science ; Climatology ; Cyclones ; Dipoles ; Earth and Environmental Science ; Earth Sciences ; Easterlies ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Kelvin waves ; La Nina ; Ocean basins ; Ocean circulation ; Oceans ; Original Paper ; Phase transitions ; Planetary waves ; Positive feedback ; Rossby waves ; Sea surface ; Sea surface temperature ; Southern Oscillation ; Surface temperature ; Tropical climate ; Upwelling ; Waste Water Technology ; Water Management ; Water Pollution Control ; Wind</subject><ispartof>Theoretical and applied climatology, 2020-08, Vol.141 (3-4), p.999-1007</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8235130ab277dad5e3e77637a3f20cc528e0419bb8f69b7cc657b437cd92c6ab3</citedby><cites>FETCH-LOGICAL-c363t-8235130ab277dad5e3e77637a3f20cc528e0419bb8f69b7cc657b437cd92c6ab3</cites><orcidid>0000-0003-1753-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00704-020-03265-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00704-020-03265-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yoo, Jae-Hwi</creatorcontrib><creatorcontrib>Moon, Suyeon</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><creatorcontrib>Yun, Kyung-Sook</creatorcontrib><creatorcontrib>Lee, June-Yi</creatorcontrib><title>Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>The role of the Indian Ocean sea surface temperature (SST) in the rapid phase transition of the El Niño–Southern Oscillation (ENSO) has received much attention over the last few decades. However, the distinctive role of the Indian Ocean Dipole (IOD) and its underlying dynamics in controlling the rapid transition remains debatable, since it is difficult to isolate the sole effect of the IOD using observation. By conducting model experiments, this study demonstrated that the positive IOD cases could contribute to the rapid phase transition from El Niño to La Niña without the assistance of the Indian Ocean Basin–wide Mode. The westerly wind anomalies over the tropical western Pacific induced not only the El Niño phase via descending Kelvin waves in the equatorial eastern Pacific but also the SST cooling in the off-equatorial western Pacific via ascending Rossby waves. The positive feedback between the upwelling Rossby waves and cool SST maintained the Philippine Sea anticyclone anomalies. The accompanying easterly wind anomalies over the tropical western Pacific triggered upwelling oceanic Kelvin waves, leading to the occurrence of La Niña. This study shows the possible role of the IOD in the rapid phase transition of ENSO.</description><subject>Anomalies</subject><subject>Anticyclones</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>Dipoles</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Easterlies</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Kelvin waves</subject><subject>La Nina</subject><subject>Ocean basins</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Planetary waves</subject><subject>Positive feedback</subject><subject>Rossby waves</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Surface temperature</subject><subject>Tropical climate</subject><subject>Upwelling</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wind</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBsmdmInS1QKVKroApDYWY7jUFchDna66I47cBLOwE04CW4DYsfmjzTz_h_pI3SawHkCIC5CFEgJUCDAKM8I30OjJGUpSdOc7aMRJEIQUeRPh-gohBUAUM7FCG0mKpiAa-dxvzQ4uMZgU9dG99jVu9Wsraxq8UKbqFe22xK23Z286myFu2WMwL1XbbC9de2vcdrgO_v54b7e3u_dOm58TAnaNo3aYsfooFZNMCc_c4wer6cPk1syX9zMJpdzohlnPckpyxIGqqRCVKrKDDNCcCYUqylondHcQJoUZZnXvCiF1jwTZcqErgqquSrZGJ0NuZ13r2sTerlya9_Gl5KmlBUceAaRogOlvQvBm1p23r4ov5EJyG3FcqhYxorlrmLJo4kNphDh9tn4v-h_XN_2roB8</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Yoo, Jae-Hwi</creator><creator>Moon, Suyeon</creator><creator>Ha, Kyung-Ja</creator><creator>Yun, Kyung-Sook</creator><creator>Lee, June-Yi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid></search><sort><creationdate>20200801</creationdate><title>Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation</title><author>Yoo, Jae-Hwi ; Moon, Suyeon ; Ha, Kyung-Ja ; Yun, Kyung-Sook ; Lee, June-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8235130ab277dad5e3e77637a3f20cc528e0419bb8f69b7cc657b437cd92c6ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anomalies</topic><topic>Anticyclones</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>Dipoles</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Easterlies</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Kelvin waves</topic><topic>La Nina</topic><topic>Ocean basins</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Planetary waves</topic><topic>Positive feedback</topic><topic>Rossby waves</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Surface temperature</topic><topic>Tropical climate</topic><topic>Upwelling</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Jae-Hwi</creatorcontrib><creatorcontrib>Moon, Suyeon</creatorcontrib><creatorcontrib>Ha, Kyung-Ja</creatorcontrib><creatorcontrib>Yun, Kyung-Sook</creatorcontrib><creatorcontrib>Lee, June-Yi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Jae-Hwi</au><au>Moon, Suyeon</au><au>Ha, Kyung-Ja</au><au>Yun, Kyung-Sook</au><au>Lee, June-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>141</volume><issue>3-4</issue><spage>999</spage><epage>1007</epage><pages>999-1007</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>The role of the Indian Ocean sea surface temperature (SST) in the rapid phase transition of the El Niño–Southern Oscillation (ENSO) has received much attention over the last few decades. However, the distinctive role of the Indian Ocean Dipole (IOD) and its underlying dynamics in controlling the rapid transition remains debatable, since it is difficult to isolate the sole effect of the IOD using observation. By conducting model experiments, this study demonstrated that the positive IOD cases could contribute to the rapid phase transition from El Niño to La Niña without the assistance of the Indian Ocean Basin–wide Mode. The westerly wind anomalies over the tropical western Pacific induced not only the El Niño phase via descending Kelvin waves in the equatorial eastern Pacific but also the SST cooling in the off-equatorial western Pacific via ascending Rossby waves. The positive feedback between the upwelling Rossby waves and cool SST maintained the Philippine Sea anticyclone anomalies. The accompanying easterly wind anomalies over the tropical western Pacific triggered upwelling oceanic Kelvin waves, leading to the occurrence of La Niña. This study shows the possible role of the IOD in the rapid phase transition of ENSO.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-020-03265-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1753-9304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0177-798X
ispartof Theoretical and applied climatology, 2020-08, Vol.141 (3-4), p.999-1007
issn 0177-798X
1434-4483
language eng
recordid cdi_proquest_journals_2423960650
source SpringerLink Journals - AutoHoldings
subjects Anomalies
Anticyclones
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate science
Climatology
Cyclones
Dipoles
Earth and Environmental Science
Earth Sciences
Easterlies
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Kelvin waves
La Nina
Ocean basins
Ocean circulation
Oceans
Original Paper
Phase transitions
Planetary waves
Positive feedback
Rossby waves
Sea surface
Sea surface temperature
Southern Oscillation
Surface temperature
Tropical climate
Upwelling
Waste Water Technology
Water Management
Water Pollution Control
Wind
title Cases for the sole effect of the Indian Ocean Dipole in the rapid phase transition of the El Niño–Southern Oscillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cases%20for%20the%20sole%20effect%20of%20the%20Indian%20Ocean%20Dipole%20in%20the%20rapid%20phase%20transition%20of%20the%20El%20Ni%C3%B1o%E2%80%93Southern%20Oscillation&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Yoo,%20Jae-Hwi&rft.date=2020-08-01&rft.volume=141&rft.issue=3-4&rft.spage=999&rft.epage=1007&rft.pages=999-1007&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-020-03265-6&rft_dat=%3Cproquest_cross%3E2423960650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423960650&rft_id=info:pmid/&rfr_iscdi=true