Stable isotope fractionations in the evaporation of water: The wind effect

We performed pan evaporation experiments with the objective of exploring the behaviour of the long‐standing Craig–Gordon (C–G) stable isotope model for evaporation under different conditions of air turbulence. The water lost through evaporation was automatically replenished so that a steady isotopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2020-07, Vol.34 (16), p.3596-3607
Hauptverfasser: Gonfiantini, Roberto, Wassenaar, Leonard I., Araguas‐Araguas, Luis J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3607
container_issue 16
container_start_page 3596
container_title Hydrological processes
container_volume 34
creator Gonfiantini, Roberto
Wassenaar, Leonard I.
Araguas‐Araguas, Luis J.
description We performed pan evaporation experiments with the objective of exploring the behaviour of the long‐standing Craig–Gordon (C–G) stable isotope model for evaporation under different conditions of air turbulence. The water lost through evaporation was automatically replenished so that a steady isotopic composition was reached, the value of which depended on the isotopic composition of the replenishment water and environmental parameters like temperature, relative humidity and isotopic composition of the atmospheric vapour, and the air turbulence index. The pans were exposed to artificial winds ranging from 0 to 2.5 m/s to change the air turbulence index, which governs the repartition between vapour transported by molecular diffusion and turbulent diffusion. Our data revealed that for wind speeds >0.5 m/s the isotopic composition of the evaporating water deviated from that predicted by the C–G model. This deviation was hypothetically attributed to microdroplets of liquid water removed by the wind without any isotopic fractionation. Isotope mass balance equations allowed us to quantify this water loss, which at wind speeds of ~2 m/s reached 10% of the total evaporation losses. An alternative kinetic evaporation model was proposed whereby the equilibrium layer and the atmospheric laminar layer above the evaporating water of the C–G model were destroyed by the wind and evaporated water molecules were directly injected into the atmosphere. In this model, the isotopic fractionations were due to the slower kinetics of hydrogen bond breakage between molecules in liquid water when heavy isotopes are involved. Accordingly, our data suggested that for isotope water balance studies where winds are frequently above 2 m/s, the C–G model may be inadequate without appropriate corrections for spray vaporization, or the introduction of appropriate kinetic isotope fractionation factors.
doi_str_mv 10.1002/hyp.13804
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423950292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423950292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-6eca24b3669f5770d3aec0b7f7d39cd2a665012669f1836c5e6143c75279d69e3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2k2Q32XiTolYpKFgPnkKandAtdbMmW0vf3m3r1csMzP_NDHyEXDMYMQA-Xu7aERMl5CdkwEDrjEFZnJIBlGWRSSjVOblIaQUAOZQwIC_vnV2skdYpdKFF6qN1XR0auy-J1g3tlkjxx7YhHmY0eLq1HcY7Ou-Tbd1UFL1H112SM2_XCa_--pB8PD7MJ9Ns9vr0PLmfZY5rlWcSneX5QkipfaEUVMKig4XyqhLaVdxKWQDj-5iVQroCJcuFUwVXupIaxZDcHO-2MXxvMHVmFTax6V8annOhC-Ca99TtkXIxpBTRmzbWXzbuDAOzV2V6VeagqmfHR3Zbr3H3P2imn2_HjV8knmnK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423950292</pqid></control><display><type>article</type><title>Stable isotope fractionations in the evaporation of water: The wind effect</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gonfiantini, Roberto ; Wassenaar, Leonard I. ; Araguas‐Araguas, Luis J.</creator><creatorcontrib>Gonfiantini, Roberto ; Wassenaar, Leonard I. ; Araguas‐Araguas, Luis J.</creatorcontrib><description>We performed pan evaporation experiments with the objective of exploring the behaviour of the long‐standing Craig–Gordon (C–G) stable isotope model for evaporation under different conditions of air turbulence. The water lost through evaporation was automatically replenished so that a steady isotopic composition was reached, the value of which depended on the isotopic composition of the replenishment water and environmental parameters like temperature, relative humidity and isotopic composition of the atmospheric vapour, and the air turbulence index. The pans were exposed to artificial winds ranging from 0 to 2.5 m/s to change the air turbulence index, which governs the repartition between vapour transported by molecular diffusion and turbulent diffusion. Our data revealed that for wind speeds &gt;0.5 m/s the isotopic composition of the evaporating water deviated from that predicted by the C–G model. This deviation was hypothetically attributed to microdroplets of liquid water removed by the wind without any isotopic fractionation. Isotope mass balance equations allowed us to quantify this water loss, which at wind speeds of ~2 m/s reached 10% of the total evaporation losses. An alternative kinetic evaporation model was proposed whereby the equilibrium layer and the atmospheric laminar layer above the evaporating water of the C–G model were destroyed by the wind and evaporated water molecules were directly injected into the atmosphere. In this model, the isotopic fractionations were due to the slower kinetics of hydrogen bond breakage between molecules in liquid water when heavy isotopes are involved. Accordingly, our data suggested that for isotope water balance studies where winds are frequently above 2 m/s, the C–G model may be inadequate without appropriate corrections for spray vaporization, or the introduction of appropriate kinetic isotope fractionation factors.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.13804</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aerodynamics ; Air ; Balance studies ; Chemical bonds ; Chemical composition ; Composition ; Corrections ; Craig–Gordon model ; deuterium ; Diffusion ; Diffusion rate ; Eddy diffusion ; Environmental factors ; Environmental parameters ; Evaporation ; Fractionation ; Hydrogen ; Hydrogen bonds ; hydrology ; Isotope composition ; Isotope fractionation ; Isotopes ; Kinetics ; Mass balance ; Molecular diffusion ; oxygen‐18 ; Pan evaporation ; Reaction kinetics ; Relative humidity ; Replenishment ; Stable isotopes ; Turbulence ; Turbulence index ; Turbulent diffusion ; Vaporization ; Water ; Water balance ; Water chemistry ; water isotopes ; Water loss ; Wind ; Wind effects ; Wind speed ; Winds</subject><ispartof>Hydrological processes, 2020-07, Vol.34 (16), p.3596-3607</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-6eca24b3669f5770d3aec0b7f7d39cd2a665012669f1836c5e6143c75279d69e3</citedby><cites>FETCH-LOGICAL-c2974-6eca24b3669f5770d3aec0b7f7d39cd2a665012669f1836c5e6143c75279d69e3</cites><orcidid>0000-0001-5532-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.13804$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.13804$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gonfiantini, Roberto</creatorcontrib><creatorcontrib>Wassenaar, Leonard I.</creatorcontrib><creatorcontrib>Araguas‐Araguas, Luis J.</creatorcontrib><title>Stable isotope fractionations in the evaporation of water: The wind effect</title><title>Hydrological processes</title><description>We performed pan evaporation experiments with the objective of exploring the behaviour of the long‐standing Craig–Gordon (C–G) stable isotope model for evaporation under different conditions of air turbulence. The water lost through evaporation was automatically replenished so that a steady isotopic composition was reached, the value of which depended on the isotopic composition of the replenishment water and environmental parameters like temperature, relative humidity and isotopic composition of the atmospheric vapour, and the air turbulence index. The pans were exposed to artificial winds ranging from 0 to 2.5 m/s to change the air turbulence index, which governs the repartition between vapour transported by molecular diffusion and turbulent diffusion. Our data revealed that for wind speeds &gt;0.5 m/s the isotopic composition of the evaporating water deviated from that predicted by the C–G model. This deviation was hypothetically attributed to microdroplets of liquid water removed by the wind without any isotopic fractionation. Isotope mass balance equations allowed us to quantify this water loss, which at wind speeds of ~2 m/s reached 10% of the total evaporation losses. An alternative kinetic evaporation model was proposed whereby the equilibrium layer and the atmospheric laminar layer above the evaporating water of the C–G model were destroyed by the wind and evaporated water molecules were directly injected into the atmosphere. In this model, the isotopic fractionations were due to the slower kinetics of hydrogen bond breakage between molecules in liquid water when heavy isotopes are involved. Accordingly, our data suggested that for isotope water balance studies where winds are frequently above 2 m/s, the C–G model may be inadequate without appropriate corrections for spray vaporization, or the introduction of appropriate kinetic isotope fractionation factors.</description><subject>Aerodynamics</subject><subject>Air</subject><subject>Balance studies</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Composition</subject><subject>Corrections</subject><subject>Craig–Gordon model</subject><subject>deuterium</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Eddy diffusion</subject><subject>Environmental factors</subject><subject>Environmental parameters</subject><subject>Evaporation</subject><subject>Fractionation</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>hydrology</subject><subject>Isotope composition</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Mass balance</subject><subject>Molecular diffusion</subject><subject>oxygen‐18</subject><subject>Pan evaporation</subject><subject>Reaction kinetics</subject><subject>Relative humidity</subject><subject>Replenishment</subject><subject>Stable isotopes</subject><subject>Turbulence</subject><subject>Turbulence index</subject><subject>Turbulent diffusion</subject><subject>Vaporization</subject><subject>Water</subject><subject>Water balance</subject><subject>Water chemistry</subject><subject>water isotopes</subject><subject>Water loss</subject><subject>Wind</subject><subject>Wind effects</subject><subject>Wind speed</subject><subject>Winds</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yDgycO2k2Q32XiTolYpKFgPnkKandAtdbMmW0vf3m3r1csMzP_NDHyEXDMYMQA-Xu7aERMl5CdkwEDrjEFZnJIBlGWRSSjVOblIaQUAOZQwIC_vnV2skdYpdKFF6qN1XR0auy-J1g3tlkjxx7YhHmY0eLq1HcY7Ou-Tbd1UFL1H112SM2_XCa_--pB8PD7MJ9Ns9vr0PLmfZY5rlWcSneX5QkipfaEUVMKig4XyqhLaVdxKWQDj-5iVQroCJcuFUwVXupIaxZDcHO-2MXxvMHVmFTax6V8annOhC-Ca99TtkXIxpBTRmzbWXzbuDAOzV2V6VeagqmfHR3Zbr3H3P2imn2_HjV8knmnK</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Gonfiantini, Roberto</creator><creator>Wassenaar, Leonard I.</creator><creator>Araguas‐Araguas, Luis J.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5532-0771</orcidid></search><sort><creationdate>20200730</creationdate><title>Stable isotope fractionations in the evaporation of water: The wind effect</title><author>Gonfiantini, Roberto ; Wassenaar, Leonard I. ; Araguas‐Araguas, Luis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-6eca24b3669f5770d3aec0b7f7d39cd2a665012669f1836c5e6143c75279d69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Air</topic><topic>Balance studies</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Composition</topic><topic>Corrections</topic><topic>Craig–Gordon model</topic><topic>deuterium</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Eddy diffusion</topic><topic>Environmental factors</topic><topic>Environmental parameters</topic><topic>Evaporation</topic><topic>Fractionation</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>hydrology</topic><topic>Isotope composition</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Mass balance</topic><topic>Molecular diffusion</topic><topic>oxygen‐18</topic><topic>Pan evaporation</topic><topic>Reaction kinetics</topic><topic>Relative humidity</topic><topic>Replenishment</topic><topic>Stable isotopes</topic><topic>Turbulence</topic><topic>Turbulence index</topic><topic>Turbulent diffusion</topic><topic>Vaporization</topic><topic>Water</topic><topic>Water balance</topic><topic>Water chemistry</topic><topic>water isotopes</topic><topic>Water loss</topic><topic>Wind</topic><topic>Wind effects</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonfiantini, Roberto</creatorcontrib><creatorcontrib>Wassenaar, Leonard I.</creatorcontrib><creatorcontrib>Araguas‐Araguas, Luis J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonfiantini, Roberto</au><au>Wassenaar, Leonard I.</au><au>Araguas‐Araguas, Luis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable isotope fractionations in the evaporation of water: The wind effect</atitle><jtitle>Hydrological processes</jtitle><date>2020-07-30</date><risdate>2020</risdate><volume>34</volume><issue>16</issue><spage>3596</spage><epage>3607</epage><pages>3596-3607</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>We performed pan evaporation experiments with the objective of exploring the behaviour of the long‐standing Craig–Gordon (C–G) stable isotope model for evaporation under different conditions of air turbulence. The water lost through evaporation was automatically replenished so that a steady isotopic composition was reached, the value of which depended on the isotopic composition of the replenishment water and environmental parameters like temperature, relative humidity and isotopic composition of the atmospheric vapour, and the air turbulence index. The pans were exposed to artificial winds ranging from 0 to 2.5 m/s to change the air turbulence index, which governs the repartition between vapour transported by molecular diffusion and turbulent diffusion. Our data revealed that for wind speeds &gt;0.5 m/s the isotopic composition of the evaporating water deviated from that predicted by the C–G model. This deviation was hypothetically attributed to microdroplets of liquid water removed by the wind without any isotopic fractionation. Isotope mass balance equations allowed us to quantify this water loss, which at wind speeds of ~2 m/s reached 10% of the total evaporation losses. An alternative kinetic evaporation model was proposed whereby the equilibrium layer and the atmospheric laminar layer above the evaporating water of the C–G model were destroyed by the wind and evaporated water molecules were directly injected into the atmosphere. In this model, the isotopic fractionations were due to the slower kinetics of hydrogen bond breakage between molecules in liquid water when heavy isotopes are involved. Accordingly, our data suggested that for isotope water balance studies where winds are frequently above 2 m/s, the C–G model may be inadequate without appropriate corrections for spray vaporization, or the introduction of appropriate kinetic isotope fractionation factors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/hyp.13804</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5532-0771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2020-07, Vol.34 (16), p.3596-3607
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_2423950292
source Wiley Online Library Journals Frontfile Complete
subjects Aerodynamics
Air
Balance studies
Chemical bonds
Chemical composition
Composition
Corrections
Craig–Gordon model
deuterium
Diffusion
Diffusion rate
Eddy diffusion
Environmental factors
Environmental parameters
Evaporation
Fractionation
Hydrogen
Hydrogen bonds
hydrology
Isotope composition
Isotope fractionation
Isotopes
Kinetics
Mass balance
Molecular diffusion
oxygen‐18
Pan evaporation
Reaction kinetics
Relative humidity
Replenishment
Stable isotopes
Turbulence
Turbulence index
Turbulent diffusion
Vaporization
Water
Water balance
Water chemistry
water isotopes
Water loss
Wind
Wind effects
Wind speed
Winds
title Stable isotope fractionations in the evaporation of water: The wind effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20isotope%20fractionations%20in%20the%20evaporation%20of%20water:%20The%20wind%20effect&rft.jtitle=Hydrological%20processes&rft.au=Gonfiantini,%20Roberto&rft.date=2020-07-30&rft.volume=34&rft.issue=16&rft.spage=3596&rft.epage=3607&rft.pages=3596-3607&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.13804&rft_dat=%3Cproquest_cross%3E2423950292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423950292&rft_id=info:pmid/&rfr_iscdi=true