A Note on the Modularization of Lattices
Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes.
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2020-07, Vol.37 (2), p.311-318 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | Order (Dordrecht) |
container_volume | 37 |
creator | Gao, Yibo |
description | Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes. |
doi_str_mv | 10.1007/s11083-019-09507-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423819726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423819726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-50b9bf73d5685a44313ca8b654282f4e92098f55bb294fa68bcf863f85c185ca3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RmXxtcizFL6h60XPIbhPdUpuapAf99UZX8OZhGBie9x14CDlFuECA9jIjguYU0FAwElqKe2SCsmXUsJbvkwmgaqkGIw7JUc4rAOBGqgk5nzUPsfgmbpry6pv7uNytXRo-XRnqKYZm4UoZep-PyUFw6-xPfveUPF9fPc1v6eLx5m4-W9CeoyhUQme60PKlVFo6ITjy3ulOScE0C8IbBkYHKbuOGRGc0l0ftOJByx7rOD4lZ2PvNsX3nc_FruIubepLywTjGk3LVKXYSPUp5px8sNs0vLn0YRHstxE7GrHViP0xYrGG-BjKFd68-PRX_U_qCyzLYR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423819726</pqid></control><display><type>article</type><title>A Note on the Modularization of Lattices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Yibo</creator><creatorcontrib>Gao, Yibo</creatorcontrib><description>Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes.</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-019-09507-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Combinatorial analysis ; Discrete Mathematics ; Lattices ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Modularization ; Order ; Ordered Algebraic Structures ; Polytopes</subject><ispartof>Order (Dordrecht), 2020-07, Vol.37 (2), p.311-318</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-50b9bf73d5685a44313ca8b654282f4e92098f55bb294fa68bcf863f85c185ca3</cites><orcidid>0000-0003-3060-2259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-019-09507-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-019-09507-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gao, Yibo</creatorcontrib><title>A Note on the Modularization of Lattices</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Discrete Mathematics</subject><subject>Lattices</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modularization</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polytopes</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RmXxtcizFL6h60XPIbhPdUpuapAf99UZX8OZhGBie9x14CDlFuECA9jIjguYU0FAwElqKe2SCsmXUsJbvkwmgaqkGIw7JUc4rAOBGqgk5nzUPsfgmbpry6pv7uNytXRo-XRnqKYZm4UoZep-PyUFw6-xPfveUPF9fPc1v6eLx5m4-W9CeoyhUQme60PKlVFo6ITjy3ulOScE0C8IbBkYHKbuOGRGc0l0ftOJByx7rOD4lZ2PvNsX3nc_FruIubepLywTjGk3LVKXYSPUp5px8sNs0vLn0YRHstxE7GrHViP0xYrGG-BjKFd68-PRX_U_qCyzLYR4</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Gao, Yibo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3060-2259</orcidid></search><sort><creationdate>20200701</creationdate><title>A Note on the Modularization of Lattices</title><author>Gao, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-50b9bf73d5685a44313ca8b654282f4e92098f55bb294fa68bcf863f85c185ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Discrete Mathematics</topic><topic>Lattices</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modularization</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yibo</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Modularization of Lattices</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>37</volume><issue>2</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>Valuations on finite lattices have been known for a long time. In this paper, we present a combinatorial procedure called modularization that associates a modular lattice to any given finite lattice such that they have the same valuation polytopes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-019-09507-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3060-2259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8094 |
ispartof | Order (Dordrecht), 2020-07, Vol.37 (2), p.311-318 |
issn | 0167-8094 1572-9273 |
language | eng |
recordid | cdi_proquest_journals_2423819726 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Combinatorial analysis Discrete Mathematics Lattices Lattices (mathematics) Mathematics Mathematics and Statistics Modularization Order Ordered Algebraic Structures Polytopes |
title | A Note on the Modularization of Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A18%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Modularization%20of%20Lattices&rft.jtitle=Order%20(Dordrecht)&rft.au=Gao,%20Yibo&rft.date=2020-07-01&rft.volume=37&rft.issue=2&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-019-09507-1&rft_dat=%3Cproquest_cross%3E2423819726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423819726&rft_id=info:pmid/&rfr_iscdi=true |