Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets

A 12‐week feeding trial was conducted to evaluate the effects of nicotinamide on the growth performance, glucose and lipid metabolism of blunt snout bream fed high‐carbohydrate diets. Fish were randomly fed four diets including two dietary carbohydrate levels (300 and 430 g/kg, deriving from corn st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture nutrition 2020-08, Vol.26 (4), p.1311-1328
Hauptverfasser: Shi, Hua‐Juan, Li, Xiang‐Fei, Xu, Chao, Zhang, Dingdong, Zhang, Li, Xia, Si‐Lei, Liu, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1328
container_issue 4
container_start_page 1311
container_title Aquaculture nutrition
container_volume 26
creator Shi, Hua‐Juan
Li, Xiang‐Fei
Xu, Chao
Zhang, Dingdong
Zhang, Li
Xia, Si‐Lei
Liu, Wenbin
description A 12‐week feeding trial was conducted to evaluate the effects of nicotinamide on the growth performance, glucose and lipid metabolism of blunt snout bream fed high‐carbohydrate diets. Fish were randomly fed four diets including two dietary carbohydrate levels (300 and 430 g/kg, deriving from corn starch) and two nicotinamide levels (0 and 31.0 mg/kg). Microcrystalline cellulose was incorporated to compensate for the carbohydrate levels required. High‐carbohydrate levels significantly (p 
doi_str_mv 10.1111/anu.13088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423712925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423712925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-7278b8acad2debdcfbebbd03e79daf26e9ac6b3664e0c66f46cb2a88f2bcb7273</originalsourceid><addsrcrecordid>eNp1kctOwzAQRSMEEuWx4A9GYoVEaOI0r2WFeEk8NrCOxva4cRXHxXaouuMT-A1-iy8hULbM5s7i3Bnp3ig6SZOLdJwp9sNFmiVVtRNN0qzIY5bU-e7PnmdxXpbZfnTg_TJJUlaV-ST6fNTCBt2j0ZJAm5Wzb-QhtAQLZ9ehhRU5ZZ3BXtA56D6QMyQ1ug0YCshtp70B7CUsukFYT9BaQ9YH9NqDVcC7oQ_gezsE4I7QwAMtsLPcoUFAw7uNoFWLHYIiCa1etF_vHwIdt-1GOgwEUlPwR9Gews7T8Z8eRi_XV8-Xt_H9083d5fw-Fqwuq7hkZcUrFCiZJC6F4sS5TDIqa4mKFVSjKHhWFDNKRFGoWSE4w6pSjAs-mrPD6HR7d4zidSAfmqUdXD--bNiMZWXKapaP1NmWEs5670g1K6fNmEqTJs1PE83YRPPbxMhOt-xad7T5H2zmjy9bxzeJVpIq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423712925</pqid></control><display><type>article</type><title>Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shi, Hua‐Juan ; Li, Xiang‐Fei ; Xu, Chao ; Zhang, Dingdong ; Zhang, Li ; Xia, Si‐Lei ; Liu, Wenbin</creator><creatorcontrib>Shi, Hua‐Juan ; Li, Xiang‐Fei ; Xu, Chao ; Zhang, Dingdong ; Zhang, Li ; Xia, Si‐Lei ; Liu, Wenbin</creatorcontrib><description>A 12‐week feeding trial was conducted to evaluate the effects of nicotinamide on the growth performance, glucose and lipid metabolism of blunt snout bream fed high‐carbohydrate diets. Fish were randomly fed four diets including two dietary carbohydrate levels (300 and 430 g/kg, deriving from corn starch) and two nicotinamide levels (0 and 31.0 mg/kg). Microcrystalline cellulose was incorporated to compensate for the carbohydrate levels required. High‐carbohydrate levels significantly (p &lt; .05) increased the hepatosomatic index, intraperitoneal fat percentage, the contents of whole‐body lipid and tissues (including liver, muscle and adipose tissue) glycogen and lipid, plasma levels of glucose, glycated serum protein, advanced glycation end products, triglyceride, pyruvate and lactic acid, as well as the hepatic transcriptions of peroxisome proliferator‐activated receptor γ (PPARγ), PPARα, glucose transporter 2 (GLUT2), glucokinase (GK), pyruvate kinase (PK), glycogen synthase (GS), glucose‐6‐phosphate dehydrogenase, sterol regulatory element‐binding protein‐1, fatty acid synthase (FAS), carnitine palmitoyl transferase I (CPTI), acetyl‐CoA carboxylase α, whereas the opposite was found for hepatic nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate (NADH) and hepatic sirtuin‐1 (SIRT1) protein level and the transcriptions of SIRT1, forkhead transcription factor 1(FOXO1), phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase (G6pase) and acyl‐CoA oxidase (p &lt; .05). Additionally, nicotinamide supplementation significantly (p &lt; .05) increased whole‐body lipid and tissues glycogen contents, hepatic NAD+ content and the NAD+/NADH ratio, hepatic SIRT1 protein level and the transcriptions of SIRT1 coactivators (PPARγ coactivator‐1α, FOXO1 PPARα), GLUT2, GK, PK, G6pase, GS and CPTI, while the opposite was found for the remaining indicators. Furthermore, a significant (p &lt; .05) interaction between dietary carbohydrate levels and nicotinamide was also observed in most parameters aforementioned. Overall, nicotinamide benefits the glucose and lipid metabolism of Megalobrama amblycephala fed high‐carbohydrate diets by mediating the transcriptions of SIRT1 and glucose and lipid metabolism‐related genes as well as stimulating glucose transportation, glycolysis, glycogenesis, fatty acid oxidation, while depressing both lipogenesis and gluconeogenesis.</description><identifier>ISSN: 1353-5773</identifier><identifier>EISSN: 1365-2095</identifier><identifier>DOI: 10.1111/anu.13088</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Adipose tissue ; carbohydrate utilization ; Carbohydrates ; Carnitine ; Cellulose ; Diet ; Fatty acids ; Feeding experiments ; Fish ; fish farming ; Freshwater fishes ; Genes ; Glucose ; glucose metabolism ; Glycogen ; growth performance ; Kinases ; Lactic acid ; Lipids ; Megalobrama amblycephala ; Metabolism ; nicotinamide ; Oxidation ; Phosphatase ; Phosphates ; post‐transcriptional regulation ; Proteins ; Receptors ; Serum ; Starch ; Sterols ; Transcription ; Transport</subject><ispartof>Aquaculture nutrition, 2020-08, Vol.26 (4), p.1311-1328</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-7278b8acad2debdcfbebbd03e79daf26e9ac6b3664e0c66f46cb2a88f2bcb7273</citedby><cites>FETCH-LOGICAL-c2978-7278b8acad2debdcfbebbd03e79daf26e9ac6b3664e0c66f46cb2a88f2bcb7273</cites><orcidid>0000-0003-1264-528X ; 0000-0002-5067-0016 ; 0000-0003-1322-3396 ; 0000-0003-0841-0584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fanu.13088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fanu.13088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shi, Hua‐Juan</creatorcontrib><creatorcontrib>Li, Xiang‐Fei</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Zhang, Dingdong</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xia, Si‐Lei</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><title>Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets</title><title>Aquaculture nutrition</title><description>A 12‐week feeding trial was conducted to evaluate the effects of nicotinamide on the growth performance, glucose and lipid metabolism of blunt snout bream fed high‐carbohydrate diets. Fish were randomly fed four diets including two dietary carbohydrate levels (300 and 430 g/kg, deriving from corn starch) and two nicotinamide levels (0 and 31.0 mg/kg). Microcrystalline cellulose was incorporated to compensate for the carbohydrate levels required. High‐carbohydrate levels significantly (p &lt; .05) increased the hepatosomatic index, intraperitoneal fat percentage, the contents of whole‐body lipid and tissues (including liver, muscle and adipose tissue) glycogen and lipid, plasma levels of glucose, glycated serum protein, advanced glycation end products, triglyceride, pyruvate and lactic acid, as well as the hepatic transcriptions of peroxisome proliferator‐activated receptor γ (PPARγ), PPARα, glucose transporter 2 (GLUT2), glucokinase (GK), pyruvate kinase (PK), glycogen synthase (GS), glucose‐6‐phosphate dehydrogenase, sterol regulatory element‐binding protein‐1, fatty acid synthase (FAS), carnitine palmitoyl transferase I (CPTI), acetyl‐CoA carboxylase α, whereas the opposite was found for hepatic nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate (NADH) and hepatic sirtuin‐1 (SIRT1) protein level and the transcriptions of SIRT1, forkhead transcription factor 1(FOXO1), phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase (G6pase) and acyl‐CoA oxidase (p &lt; .05). Additionally, nicotinamide supplementation significantly (p &lt; .05) increased whole‐body lipid and tissues glycogen contents, hepatic NAD+ content and the NAD+/NADH ratio, hepatic SIRT1 protein level and the transcriptions of SIRT1 coactivators (PPARγ coactivator‐1α, FOXO1 PPARα), GLUT2, GK, PK, G6pase, GS and CPTI, while the opposite was found for the remaining indicators. Furthermore, a significant (p &lt; .05) interaction between dietary carbohydrate levels and nicotinamide was also observed in most parameters aforementioned. Overall, nicotinamide benefits the glucose and lipid metabolism of Megalobrama amblycephala fed high‐carbohydrate diets by mediating the transcriptions of SIRT1 and glucose and lipid metabolism‐related genes as well as stimulating glucose transportation, glycolysis, glycogenesis, fatty acid oxidation, while depressing both lipogenesis and gluconeogenesis.</description><subject>Adipose tissue</subject><subject>carbohydrate utilization</subject><subject>Carbohydrates</subject><subject>Carnitine</subject><subject>Cellulose</subject><subject>Diet</subject><subject>Fatty acids</subject><subject>Feeding experiments</subject><subject>Fish</subject><subject>fish farming</subject><subject>Freshwater fishes</subject><subject>Genes</subject><subject>Glucose</subject><subject>glucose metabolism</subject><subject>Glycogen</subject><subject>growth performance</subject><subject>Kinases</subject><subject>Lactic acid</subject><subject>Lipids</subject><subject>Megalobrama amblycephala</subject><subject>Metabolism</subject><subject>nicotinamide</subject><subject>Oxidation</subject><subject>Phosphatase</subject><subject>Phosphates</subject><subject>post‐transcriptional regulation</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Serum</subject><subject>Starch</subject><subject>Sterols</subject><subject>Transcription</subject><subject>Transport</subject><issn>1353-5773</issn><issn>1365-2095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kctOwzAQRSMEEuWx4A9GYoVEaOI0r2WFeEk8NrCOxva4cRXHxXaouuMT-A1-iy8hULbM5s7i3Bnp3ig6SZOLdJwp9sNFmiVVtRNN0qzIY5bU-e7PnmdxXpbZfnTg_TJJUlaV-ST6fNTCBt2j0ZJAm5Wzb-QhtAQLZ9ehhRU5ZZ3BXtA56D6QMyQ1ug0YCshtp70B7CUsukFYT9BaQ9YH9NqDVcC7oQ_gezsE4I7QwAMtsLPcoUFAw7uNoFWLHYIiCa1etF_vHwIdt-1GOgwEUlPwR9Gews7T8Z8eRi_XV8-Xt_H9083d5fw-Fqwuq7hkZcUrFCiZJC6F4sS5TDIqa4mKFVSjKHhWFDNKRFGoWSE4w6pSjAs-mrPD6HR7d4zidSAfmqUdXD--bNiMZWXKapaP1NmWEs5670g1K6fNmEqTJs1PE83YRPPbxMhOt-xad7T5H2zmjy9bxzeJVpIq</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Shi, Hua‐Juan</creator><creator>Li, Xiang‐Fei</creator><creator>Xu, Chao</creator><creator>Zhang, Dingdong</creator><creator>Zhang, Li</creator><creator>Xia, Si‐Lei</creator><creator>Liu, Wenbin</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1264-528X</orcidid><orcidid>https://orcid.org/0000-0002-5067-0016</orcidid><orcidid>https://orcid.org/0000-0003-1322-3396</orcidid><orcidid>https://orcid.org/0000-0003-0841-0584</orcidid></search><sort><creationdate>202008</creationdate><title>Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets</title><author>Shi, Hua‐Juan ; Li, Xiang‐Fei ; Xu, Chao ; Zhang, Dingdong ; Zhang, Li ; Xia, Si‐Lei ; Liu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-7278b8acad2debdcfbebbd03e79daf26e9ac6b3664e0c66f46cb2a88f2bcb7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipose tissue</topic><topic>carbohydrate utilization</topic><topic>Carbohydrates</topic><topic>Carnitine</topic><topic>Cellulose</topic><topic>Diet</topic><topic>Fatty acids</topic><topic>Feeding experiments</topic><topic>Fish</topic><topic>fish farming</topic><topic>Freshwater fishes</topic><topic>Genes</topic><topic>Glucose</topic><topic>glucose metabolism</topic><topic>Glycogen</topic><topic>growth performance</topic><topic>Kinases</topic><topic>Lactic acid</topic><topic>Lipids</topic><topic>Megalobrama amblycephala</topic><topic>Metabolism</topic><topic>nicotinamide</topic><topic>Oxidation</topic><topic>Phosphatase</topic><topic>Phosphates</topic><topic>post‐transcriptional regulation</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Serum</topic><topic>Starch</topic><topic>Sterols</topic><topic>Transcription</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hua‐Juan</creatorcontrib><creatorcontrib>Li, Xiang‐Fei</creatorcontrib><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Zhang, Dingdong</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Xia, Si‐Lei</creatorcontrib><creatorcontrib>Liu, Wenbin</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Aquaculture nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hua‐Juan</au><au>Li, Xiang‐Fei</au><au>Xu, Chao</au><au>Zhang, Dingdong</au><au>Zhang, Li</au><au>Xia, Si‐Lei</au><au>Liu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets</atitle><jtitle>Aquaculture nutrition</jtitle><date>2020-08</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><spage>1311</spage><epage>1328</epage><pages>1311-1328</pages><issn>1353-5773</issn><eissn>1365-2095</eissn><abstract>A 12‐week feeding trial was conducted to evaluate the effects of nicotinamide on the growth performance, glucose and lipid metabolism of blunt snout bream fed high‐carbohydrate diets. Fish were randomly fed four diets including two dietary carbohydrate levels (300 and 430 g/kg, deriving from corn starch) and two nicotinamide levels (0 and 31.0 mg/kg). Microcrystalline cellulose was incorporated to compensate for the carbohydrate levels required. High‐carbohydrate levels significantly (p &lt; .05) increased the hepatosomatic index, intraperitoneal fat percentage, the contents of whole‐body lipid and tissues (including liver, muscle and adipose tissue) glycogen and lipid, plasma levels of glucose, glycated serum protein, advanced glycation end products, triglyceride, pyruvate and lactic acid, as well as the hepatic transcriptions of peroxisome proliferator‐activated receptor γ (PPARγ), PPARα, glucose transporter 2 (GLUT2), glucokinase (GK), pyruvate kinase (PK), glycogen synthase (GS), glucose‐6‐phosphate dehydrogenase, sterol regulatory element‐binding protein‐1, fatty acid synthase (FAS), carnitine palmitoyl transferase I (CPTI), acetyl‐CoA carboxylase α, whereas the opposite was found for hepatic nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate (NADH) and hepatic sirtuin‐1 (SIRT1) protein level and the transcriptions of SIRT1, forkhead transcription factor 1(FOXO1), phosphoenolpyruvate carboxykinase, glucose‐6‐phosphatase (G6pase) and acyl‐CoA oxidase (p &lt; .05). Additionally, nicotinamide supplementation significantly (p &lt; .05) increased whole‐body lipid and tissues glycogen contents, hepatic NAD+ content and the NAD+/NADH ratio, hepatic SIRT1 protein level and the transcriptions of SIRT1 coactivators (PPARγ coactivator‐1α, FOXO1 PPARα), GLUT2, GK, PK, G6pase, GS and CPTI, while the opposite was found for the remaining indicators. Furthermore, a significant (p &lt; .05) interaction between dietary carbohydrate levels and nicotinamide was also observed in most parameters aforementioned. Overall, nicotinamide benefits the glucose and lipid metabolism of Megalobrama amblycephala fed high‐carbohydrate diets by mediating the transcriptions of SIRT1 and glucose and lipid metabolism‐related genes as well as stimulating glucose transportation, glycolysis, glycogenesis, fatty acid oxidation, while depressing both lipogenesis and gluconeogenesis.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/anu.13088</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1264-528X</orcidid><orcidid>https://orcid.org/0000-0002-5067-0016</orcidid><orcidid>https://orcid.org/0000-0003-1322-3396</orcidid><orcidid>https://orcid.org/0000-0003-0841-0584</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1353-5773
ispartof Aquaculture nutrition, 2020-08, Vol.26 (4), p.1311-1328
issn 1353-5773
1365-2095
language eng
recordid cdi_proquest_journals_2423712925
source Wiley Online Library Journals Frontfile Complete
subjects Adipose tissue
carbohydrate utilization
Carbohydrates
Carnitine
Cellulose
Diet
Fatty acids
Feeding experiments
Fish
fish farming
Freshwater fishes
Genes
Glucose
glucose metabolism
Glycogen
growth performance
Kinases
Lactic acid
Lipids
Megalobrama amblycephala
Metabolism
nicotinamide
Oxidation
Phosphatase
Phosphates
post‐transcriptional regulation
Proteins
Receptors
Serum
Starch
Sterols
Transcription
Transport
title Nicotinamide improves the growth performance, intermediary metabolism and glucose homeostasis of blunt snout bream Megalobrama amblycephala fed high‐carbohydrate diets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nicotinamide%20improves%20the%20growth%20performance,%20intermediary%20metabolism%20and%20glucose%20homeostasis%20of%20blunt%20snout%20bream%20Megalobrama%20amblycephala%20fed%20high%E2%80%90carbohydrate%20diets&rft.jtitle=Aquaculture%20nutrition&rft.au=Shi,%20Hua%E2%80%90Juan&rft.date=2020-08&rft.volume=26&rft.issue=4&rft.spage=1311&rft.epage=1328&rft.pages=1311-1328&rft.issn=1353-5773&rft.eissn=1365-2095&rft_id=info:doi/10.1111/anu.13088&rft_dat=%3Cproquest_cross%3E2423712925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423712925&rft_id=info:pmid/&rfr_iscdi=true