Benchmarking 16-element quantum search algorithms on superconducting quantum processors

We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Gwinner, Jan, Briański, Marcin, Burkot, Wojciech, Czerwiński, Łukasz, Hlembotskyi, Vladyslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gwinner, Jan
Briański, Marcin
Burkot, Wojciech
Czerwiński, Łukasz
Hlembotskyi, Vladyslav
description We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currently considered the main source of errors in quantum computations. Comparing theoretical expectations of an algorithm performance with the actual data, we explore the hardware limits, showing sharp, phase-transition-like degradation of performance on quantum processors. We conclude that it is extremely important to design hardware-aware algorithms and to include any other low level optimizations on NISQ devices.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2423679915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423679915</sourcerecordid><originalsourceid>FETCH-proquest_journals_24236799153</originalsourceid><addsrcrecordid>eNqNy0sKwjAUheEgCBbtHgKOC-1NH3aqKC5AcFhCvPZhk7S5yf6toHNHZ_B_Z8UiECJLDjnAhsVEQ5qmUFZQFCJi9yMa1WnpXr1peVYmOKJG4_kcpPFBc0LpVMfl2FrX-04Tt4ZTmNApax5B-c_vhydnFRJZRzu2fsqRMP7ulu0v59vpmixkDki-GWxwZkkN5CDKqq6zQvyn3tghQtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423679915</pqid></control><display><type>article</type><title>Benchmarking 16-element quantum search algorithms on superconducting quantum processors</title><source>Free E- Journals</source><creator>Gwinner, Jan ; Briański, Marcin ; Burkot, Wojciech ; Czerwiński, Łukasz ; Hlembotskyi, Vladyslav</creator><creatorcontrib>Gwinner, Jan ; Briański, Marcin ; Burkot, Wojciech ; Czerwiński, Łukasz ; Hlembotskyi, Vladyslav</creatorcontrib><description>We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currently considered the main source of errors in quantum computations. Comparing theoretical expectations of an algorithm performance with the actual data, we explore the hardware limits, showing sharp, phase-transition-like degradation of performance on quantum processors. We conclude that it is extremely important to design hardware-aware algorithms and to include any other low level optimizations on NISQ devices.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Hardware ; Low level ; Performance degradation ; Phase transitions ; Processors ; Quantum computing ; Qubits (quantum computing) ; Search algorithms</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gwinner, Jan</creatorcontrib><creatorcontrib>Briański, Marcin</creatorcontrib><creatorcontrib>Burkot, Wojciech</creatorcontrib><creatorcontrib>Czerwiński, Łukasz</creatorcontrib><creatorcontrib>Hlembotskyi, Vladyslav</creatorcontrib><title>Benchmarking 16-element quantum search algorithms on superconducting quantum processors</title><title>arXiv.org</title><description>We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currently considered the main source of errors in quantum computations. Comparing theoretical expectations of an algorithm performance with the actual data, we explore the hardware limits, showing sharp, phase-transition-like degradation of performance on quantum processors. We conclude that it is extremely important to design hardware-aware algorithms and to include any other low level optimizations on NISQ devices.</description><subject>Algorithms</subject><subject>Hardware</subject><subject>Low level</subject><subject>Performance degradation</subject><subject>Phase transitions</subject><subject>Processors</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Search algorithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy0sKwjAUheEgCBbtHgKOC-1NH3aqKC5AcFhCvPZhk7S5yf6toHNHZ_B_Z8UiECJLDjnAhsVEQ5qmUFZQFCJi9yMa1WnpXr1peVYmOKJG4_kcpPFBc0LpVMfl2FrX-04Tt4ZTmNApax5B-c_vhydnFRJZRzu2fsqRMP7ulu0v59vpmixkDki-GWxwZkkN5CDKqq6zQvyn3tghQtY</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Gwinner, Jan</creator><creator>Briański, Marcin</creator><creator>Burkot, Wojciech</creator><creator>Czerwiński, Łukasz</creator><creator>Hlembotskyi, Vladyslav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210119</creationdate><title>Benchmarking 16-element quantum search algorithms on superconducting quantum processors</title><author>Gwinner, Jan ; Briański, Marcin ; Burkot, Wojciech ; Czerwiński, Łukasz ; Hlembotskyi, Vladyslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24236799153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Hardware</topic><topic>Low level</topic><topic>Performance degradation</topic><topic>Phase transitions</topic><topic>Processors</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Search algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Gwinner, Jan</creatorcontrib><creatorcontrib>Briański, Marcin</creatorcontrib><creatorcontrib>Burkot, Wojciech</creatorcontrib><creatorcontrib>Czerwiński, Łukasz</creatorcontrib><creatorcontrib>Hlembotskyi, Vladyslav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gwinner, Jan</au><au>Briański, Marcin</au><au>Burkot, Wojciech</au><au>Czerwiński, Łukasz</au><au>Hlembotskyi, Vladyslav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Benchmarking 16-element quantum search algorithms on superconducting quantum processors</atitle><jtitle>arXiv.org</jtitle><date>2021-01-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We present experimental results on running 4-qubit unstructured search on IBM quantum processors. Our best attempt attained probability of success around 24.5%. We try several algorithms and use the most recent developments in quantum search to reduce the number of entangling gates that are currently considered the main source of errors in quantum computations. Comparing theoretical expectations of an algorithm performance with the actual data, we explore the hardware limits, showing sharp, phase-transition-like degradation of performance on quantum processors. We conclude that it is extremely important to design hardware-aware algorithms and to include any other low level optimizations on NISQ devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2423679915
source Free E- Journals
subjects Algorithms
Hardware
Low level
Performance degradation
Phase transitions
Processors
Quantum computing
Qubits (quantum computing)
Search algorithms
title Benchmarking 16-element quantum search algorithms on superconducting quantum processors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Benchmarking%2016-element%20quantum%20search%20algorithms%20on%20superconducting%20quantum%20processors&rft.jtitle=arXiv.org&rft.au=Gwinner,%20Jan&rft.date=2021-01-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2423679915%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423679915&rft_id=info:pmid/&rfr_iscdi=true