An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades

The design of large and lightweight wind turbines is a current challenge in the wind energy industry. In this context, this work aims to present a novel methodology to reduce the mass of composite wind turbine blades by combining evolutionary and topology optimization schemes in a staggered mode. Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2020-08, Vol.62 (2), p.619-643
Hauptverfasser: Albanesi, A. E., Peralta, I., Bre, F., Storti, B. A., Fachinotti, V. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 619
container_title Structural and multidisciplinary optimization
container_volume 62
creator Albanesi, A. E.
Peralta, I.
Bre, F.
Storti, B. A.
Fachinotti, V. D.
description The design of large and lightweight wind turbines is a current challenge in the wind energy industry. In this context, this work aims to present a novel methodology to reduce the mass of composite wind turbine blades by combining evolutionary and topology optimization schemes in a staggered mode. First, the optimal laminate layout in the outer shell skin of the blade is determined by using genetic algorithms and by assuming that the shear webs are fully dense. Considering this optimized shell skin, the material is removed from the shear webs by using topology optimization. In both cases, the blade is assumed to be subjected to an extreme load scenario, with constraints on the tip displacement, the stresses, the natural vibration frequencies, and buckling phenomena. As an extra feature, the methodology integrates the inverse finite element method to recover the aerodynamically efficient shape of the blade when it is working in normal load scenario as well as to increase the tower clearance safety margin under the extreme load scenario. To illustrate the performance of the methodology, the design of a 28.5-m composite blade is presented. Results show mass savings of up to 23% and a significant increase of the tower clearance safety margin. Furthermore, it is observed that after the classical genetic optimization of the shell skin, there is still margin to achieve additional mass savings via topology optimization of the shear webs without compromising the structural response of the blade.
doi_str_mv 10.1007/s00158-020-02518-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423665323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423665323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fd6093a286690bd967cad2b33fd214ef7e751da4f70cb189fb948407c4c014503</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouD6-gKeA5-rk0TY9LosvWPCi4C2keex2aZuatIrihze7K3rzMGQm8_9NMn-ELghcEYDyOgKQXGRAIUVOREYP0IwUJM8IF-LwNy9fjtFJjBsAEMCrGfqa99gPY9M1n2psfI87O669wbWK1uBUj2uL7Ztvp21XhQ-seoNHP_jWr1IxDMErvbYx3eFgzaTtDulUjNg7rH03-NiMFr83W3AKddNbXLfK2HiGjpxqoz3_OU_R8-3N0-I-Wz7ePSzmy0wzUo2ZMwVUTFFRFBXUpipKrQytGXOGEm5dacucGMVdCbomonJ1xQWHUnMNhOfATtHlfm767Otk4yg3fgp9elJSTllR5IyypKJ7lQ4-xmCdHELTpZUlAbl1We5dlslluXNZ0gSxPRSTuF_Z8Df6H-obgfWBtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423665323</pqid></control><display><type>article</type><title>An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades</title><source>Springer Nature - Complete Springer Journals</source><creator>Albanesi, A. E. ; Peralta, I. ; Bre, F. ; Storti, B. A. ; Fachinotti, V. D.</creator><creatorcontrib>Albanesi, A. E. ; Peralta, I. ; Bre, F. ; Storti, B. A. ; Fachinotti, V. D.</creatorcontrib><description>The design of large and lightweight wind turbines is a current challenge in the wind energy industry. In this context, this work aims to present a novel methodology to reduce the mass of composite wind turbine blades by combining evolutionary and topology optimization schemes in a staggered mode. First, the optimal laminate layout in the outer shell skin of the blade is determined by using genetic algorithms and by assuming that the shear webs are fully dense. Considering this optimized shell skin, the material is removed from the shear webs by using topology optimization. In both cases, the blade is assumed to be subjected to an extreme load scenario, with constraints on the tip displacement, the stresses, the natural vibration frequencies, and buckling phenomena. As an extra feature, the methodology integrates the inverse finite element method to recover the aerodynamically efficient shape of the blade when it is working in normal load scenario as well as to increase the tower clearance safety margin under the extreme load scenario. To illustrate the performance of the methodology, the design of a 28.5-m composite blade is presented. Results show mass savings of up to 23% and a significant increase of the tower clearance safety margin. Furthermore, it is observed that after the classical genetic optimization of the shell skin, there is still margin to achieve additional mass savings via topology optimization of the shear webs without compromising the structural response of the blade.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-020-02518-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Engineering ; Engineering Design ; Finite element method ; Genetic algorithms ; Methodology ; Optimization ; Research Paper ; Safety margins ; Shear ; Theoretical and Applied Mechanics ; Topology optimization ; Turbine blades ; Webs ; Wind power ; Wind turbines</subject><ispartof>Structural and multidisciplinary optimization, 2020-08, Vol.62 (2), p.619-643</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fd6093a286690bd967cad2b33fd214ef7e751da4f70cb189fb948407c4c014503</citedby><cites>FETCH-LOGICAL-c319t-fd6093a286690bd967cad2b33fd214ef7e751da4f70cb189fb948407c4c014503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-020-02518-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-020-02518-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Albanesi, A. E.</creatorcontrib><creatorcontrib>Peralta, I.</creatorcontrib><creatorcontrib>Bre, F.</creatorcontrib><creatorcontrib>Storti, B. A.</creatorcontrib><creatorcontrib>Fachinotti, V. D.</creatorcontrib><title>An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>The design of large and lightweight wind turbines is a current challenge in the wind energy industry. In this context, this work aims to present a novel methodology to reduce the mass of composite wind turbine blades by combining evolutionary and topology optimization schemes in a staggered mode. First, the optimal laminate layout in the outer shell skin of the blade is determined by using genetic algorithms and by assuming that the shear webs are fully dense. Considering this optimized shell skin, the material is removed from the shear webs by using topology optimization. In both cases, the blade is assumed to be subjected to an extreme load scenario, with constraints on the tip displacement, the stresses, the natural vibration frequencies, and buckling phenomena. As an extra feature, the methodology integrates the inverse finite element method to recover the aerodynamically efficient shape of the blade when it is working in normal load scenario as well as to increase the tower clearance safety margin under the extreme load scenario. To illustrate the performance of the methodology, the design of a 28.5-m composite blade is presented. Results show mass savings of up to 23% and a significant increase of the tower clearance safety margin. Furthermore, it is observed that after the classical genetic optimization of the shell skin, there is still margin to achieve additional mass savings via topology optimization of the shear webs without compromising the structural response of the blade.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Genetic algorithms</subject><subject>Methodology</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Safety margins</subject><subject>Shear</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Turbine blades</subject><subject>Webs</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLxDAQx4MouD6-gKeA5-rk0TY9LosvWPCi4C2keex2aZuatIrihze7K3rzMGQm8_9NMn-ELghcEYDyOgKQXGRAIUVOREYP0IwUJM8IF-LwNy9fjtFJjBsAEMCrGfqa99gPY9M1n2psfI87O669wbWK1uBUj2uL7Ztvp21XhQ-seoNHP_jWr1IxDMErvbYx3eFgzaTtDulUjNg7rH03-NiMFr83W3AKddNbXLfK2HiGjpxqoz3_OU_R8-3N0-I-Wz7ePSzmy0wzUo2ZMwVUTFFRFBXUpipKrQytGXOGEm5dacucGMVdCbomonJ1xQWHUnMNhOfATtHlfm767Otk4yg3fgp9elJSTllR5IyypKJ7lQ4-xmCdHELTpZUlAbl1We5dlslluXNZ0gSxPRSTuF_Z8Df6H-obgfWBtg</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Albanesi, A. E.</creator><creator>Peralta, I.</creator><creator>Bre, F.</creator><creator>Storti, B. A.</creator><creator>Fachinotti, V. D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200801</creationdate><title>An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades</title><author>Albanesi, A. E. ; Peralta, I. ; Bre, F. ; Storti, B. A. ; Fachinotti, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fd6093a286690bd967cad2b33fd214ef7e751da4f70cb189fb948407c4c014503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Genetic algorithms</topic><topic>Methodology</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Safety margins</topic><topic>Shear</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Turbine blades</topic><topic>Webs</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albanesi, A. E.</creatorcontrib><creatorcontrib>Peralta, I.</creatorcontrib><creatorcontrib>Bre, F.</creatorcontrib><creatorcontrib>Storti, B. A.</creatorcontrib><creatorcontrib>Fachinotti, V. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albanesi, A. E.</au><au>Peralta, I.</au><au>Bre, F.</au><au>Storti, B. A.</au><au>Fachinotti, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>62</volume><issue>2</issue><spage>619</spage><epage>643</epage><pages>619-643</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>The design of large and lightweight wind turbines is a current challenge in the wind energy industry. In this context, this work aims to present a novel methodology to reduce the mass of composite wind turbine blades by combining evolutionary and topology optimization schemes in a staggered mode. First, the optimal laminate layout in the outer shell skin of the blade is determined by using genetic algorithms and by assuming that the shear webs are fully dense. Considering this optimized shell skin, the material is removed from the shear webs by using topology optimization. In both cases, the blade is assumed to be subjected to an extreme load scenario, with constraints on the tip displacement, the stresses, the natural vibration frequencies, and buckling phenomena. As an extra feature, the methodology integrates the inverse finite element method to recover the aerodynamically efficient shape of the blade when it is working in normal load scenario as well as to increase the tower clearance safety margin under the extreme load scenario. To illustrate the performance of the methodology, the design of a 28.5-m composite blade is presented. Results show mass savings of up to 23% and a significant increase of the tower clearance safety margin. Furthermore, it is observed that after the classical genetic optimization of the shell skin, there is still margin to achieve additional mass savings via topology optimization of the shear webs without compromising the structural response of the blade.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-020-02518-2</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2020-08, Vol.62 (2), p.619-643
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2423665323
source Springer Nature - Complete Springer Journals
subjects Computational Mathematics and Numerical Analysis
Engineering
Engineering Design
Finite element method
Genetic algorithms
Methodology
Optimization
Research Paper
Safety margins
Shear
Theoretical and Applied Mechanics
Topology optimization
Turbine blades
Webs
Wind power
Wind turbines
title An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimization%20method%20based%20on%20the%20evolutionary%20and%20topology%20approaches%20to%20reduce%20the%20mass%20of%20composite%20wind%20turbine%20blades&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Albanesi,%20A.%20E.&rft.date=2020-08-01&rft.volume=62&rft.issue=2&rft.spage=619&rft.epage=643&rft.pages=619-643&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-020-02518-2&rft_dat=%3Cproquest_cross%3E2423665323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423665323&rft_id=info:pmid/&rfr_iscdi=true