Quaternary ammonium salts induced flocculation of graphene oxide for the fabrication of multifunctional aerogel

In this study, a novel method “spray-penetration-flocculation” was utilized to fabricate graphene oxide (GO)/quaternary ammonium salts (QAS) hybrid macroscopic aerogels to avoid the sudden precipitation of GO when it was combined with polycations and the collapse of three-dimensional monolith during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2020-10, Vol.55 (28), p.13751-13766
Hauptverfasser: Pan, Nengyu, Wei, Yimin, Ren, Xuehong, Huang, Tung-Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a novel method “spray-penetration-flocculation” was utilized to fabricate graphene oxide (GO)/quaternary ammonium salts (QAS) hybrid macroscopic aerogels to avoid the sudden precipitation of GO when it was combined with polycations and the collapse of three-dimensional monolith during the subsequent freeze-drying procedure. QAS could penetrate downward and induce the in situ flocculation of GO simultaneously, thus leading to the formation of GO-based hydrogel without any additional procedure requiring high-energy consumption. This unique method endowed an aerogel with hierarchically porous structure. The porous structure and low density made the aerogel a promising material for wastewater treatment with ultrahigh adsorption capacity toward soluble dyes, organic solvents and oils. Additionally, the QAS containing N-halamine groups loaded on GO functioned as an efficient biocidal component against Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895) and could inactivate the bacteria completely within 5 min of contact time. The as-constructed aerogel with these great attributes may serve as a promising candidate for water purification such as solvent recovery, oil/water separation and disinfection. Graphic abstract
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-020-04993-w