Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study
Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp...
Gespeichert in:
Veröffentlicht in: | Journal of inorganic and organometallic polymers and materials 2020-08, Vol.30 (8), p.2890-2906 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2906 |
---|---|
container_issue | 8 |
container_start_page | 2890 |
container_title | Journal of inorganic and organometallic polymers and materials |
container_volume | 30 |
creator | Raafat, Amany I. Kamal, H. Sharada, Hayat M. Abd elhalim, Sawsan A. Mohamed, Randa D. |
description | Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably. |
doi_str_mv | 10.1007/s10904-019-01418-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423565227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423565227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</originalsourceid><addsrcrecordid>eNp9UEtPAjEQ3hhNRPQPeGriRQ8rfWy3izcFBRLUBNBr0-0Dl0CL7W7i_gl_sxWM3jxMZjLzPTJfkpwjeI0gZL2AYB9mKUT9WBkqUnKQdBBlWYoyig5_54wcJychrCAkBaSok3zOhKpEXTkL5q2t33SoAnAGPIqljXOzAUO31Qo8CevAuFXefbRiGwm17l3eSiErkY70Oi7sFZhLYYxbK2CcB3fOarCoQmg0mOmlttrvfG7AxILXqvYODH2zjLe1FkGDed2o9jQ5MmId9NlP7yYvD_eLwTidPo8mg9tpKgnN61SasqQCZUWJKZbxE1iqvpA5QxCjPlMlK2XJUKGhIZSpHEOU56qAghhFBctJN7nY6269e290qPnKNd5GS44zHD0oxiyi8B4lvQvBa8O3vtoI33IE-XfufJ87j7nzXe6cRBLZk0IE26X2f9L_sL4AGoOGnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423565227</pqid></control><display><type>article</type><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</creator><creatorcontrib>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</creatorcontrib><description>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</description><identifier>ISSN: 1574-1443</identifier><identifier>EISSN: 1574-1451</identifier><identifier>DOI: 10.1007/s10904-019-01418-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apatite ; Biocompatibility ; Biodegradability ; Biomedical materials ; Cementing ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Crosslinking ; Drug delivery systems ; E coli ; Functional groups ; Gamma irradiation ; Gamma rays ; Gelatin ; Hydroxyapatite ; Inorganic Chemistry ; Ketoprofen ; Magnesium ; Mechanical properties ; Nanocomposites ; Nanoparticles ; Organic Chemistry ; Polymer Sciences ; Porosity ; Regeneration ; Scaffolds ; Sterilization ; Tissue engineering ; Toxicity</subject><ispartof>Journal of inorganic and organometallic polymers and materials, 2020-08, Vol.30 (8), p.2890-2906</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</citedby><cites>FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</cites><orcidid>0000-0003-4210-5591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10904-019-01418-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10904-019-01418-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Raafat, Amany I.</creatorcontrib><creatorcontrib>Kamal, H.</creatorcontrib><creatorcontrib>Sharada, Hayat M.</creatorcontrib><creatorcontrib>Abd elhalim, Sawsan A.</creatorcontrib><creatorcontrib>Mohamed, Randa D.</creatorcontrib><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><title>Journal of inorganic and organometallic polymers and materials</title><addtitle>J Inorg Organomet Polym</addtitle><description>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</description><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Cementing</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crosslinking</subject><subject>Drug delivery systems</subject><subject>E coli</subject><subject>Functional groups</subject><subject>Gamma irradiation</subject><subject>Gamma rays</subject><subject>Gelatin</subject><subject>Hydroxyapatite</subject><subject>Inorganic Chemistry</subject><subject>Ketoprofen</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Regeneration</subject><subject>Scaffolds</subject><subject>Sterilization</subject><subject>Tissue engineering</subject><subject>Toxicity</subject><issn>1574-1443</issn><issn>1574-1451</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtPAjEQ3hhNRPQPeGriRQ8rfWy3izcFBRLUBNBr0-0Dl0CL7W7i_gl_sxWM3jxMZjLzPTJfkpwjeI0gZL2AYB9mKUT9WBkqUnKQdBBlWYoyig5_54wcJychrCAkBaSok3zOhKpEXTkL5q2t33SoAnAGPIqljXOzAUO31Qo8CevAuFXefbRiGwm17l3eSiErkY70Oi7sFZhLYYxbK2CcB3fOarCoQmg0mOmlttrvfG7AxILXqvYODH2zjLe1FkGDed2o9jQ5MmId9NlP7yYvD_eLwTidPo8mg9tpKgnN61SasqQCZUWJKZbxE1iqvpA5QxCjPlMlK2XJUKGhIZSpHEOU56qAghhFBctJN7nY6269e290qPnKNd5GS44zHD0oxiyi8B4lvQvBa8O3vtoI33IE-XfufJ87j7nzXe6cRBLZk0IE26X2f9L_sL4AGoOGnA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Raafat, Amany I.</creator><creator>Kamal, H.</creator><creator>Sharada, Hayat M.</creator><creator>Abd elhalim, Sawsan A.</creator><creator>Mohamed, Randa D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4210-5591</orcidid></search><sort><creationdate>20200801</creationdate><title>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</title><author>Raafat, Amany I. ; Kamal, H. ; Sharada, Hayat M. ; Abd elhalim, Sawsan A. ; Mohamed, Randa D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-cfbb5a148b252c8050bd9ac67102197db7bcb718e0f357d620166d80a3fd5a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Cementing</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crosslinking</topic><topic>Drug delivery systems</topic><topic>E coli</topic><topic>Functional groups</topic><topic>Gamma irradiation</topic><topic>Gamma rays</topic><topic>Gelatin</topic><topic>Hydroxyapatite</topic><topic>Inorganic Chemistry</topic><topic>Ketoprofen</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Regeneration</topic><topic>Scaffolds</topic><topic>Sterilization</topic><topic>Tissue engineering</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raafat, Amany I.</creatorcontrib><creatorcontrib>Kamal, H.</creatorcontrib><creatorcontrib>Sharada, Hayat M.</creatorcontrib><creatorcontrib>Abd elhalim, Sawsan A.</creatorcontrib><creatorcontrib>Mohamed, Randa D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raafat, Amany I.</au><au>Kamal, H.</au><au>Sharada, Hayat M.</au><au>Abd elhalim, Sawsan A.</au><au>Mohamed, Randa D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study</atitle><jtitle>Journal of inorganic and organometallic polymers and materials</jtitle><stitle>J Inorg Organomet Polym</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>30</volume><issue>8</issue><spage>2890</spage><epage>2906</epage><pages>2890-2906</pages><issn>1574-1443</issn><eissn>1574-1451</eissn><abstract>Novel three-dimensional biodegradable porous nanocomposite bone scaffolds were fabricated using acacia gum and gelatin as the base polymer matrix and magnesium doped nano hydroxyapatite as cementing materials using gamma irradiation facility for crosslinking and sterilization processes. Mg-doped HAp nanoparticles were synthesized using wet chemical method. XRD studies verified the nano-scale size of the prepared HAp. In addition to Ca and P in the prepared n-HAp, the EDX analysis revealed the presence of Mg in the doped HAp samples. FTIR studies confirmed the existence of the characteristic functional groups of the scaffold constituents. The swelling behavior was found to be dependent on the quantity of embedded HAp nanoparticles. Nanocomposite scaffold porosity ranged from 26 to 39%, which increased with the inclusion of Mg ions. The developed scaffolds showed appropriate mechanical properties that enhanced by the existence of HAp nanoparticles. The incorporation of the Mg-doped HAp nanoparticles encourages the development of bone-like apatite layer. In vitro cytotoxicity assessment and blood compatibility demonstrated their biocompatibility. The developed scaffolds show promising antibacterial activity against Staphylococcus aureus and Escherichia coli. In vitro drug release study showed that the loaded Ketoprofen scaffolds were able to deliver the loaded drug sustainably.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10904-019-01418-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4210-5591</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-1443 |
ispartof | Journal of inorganic and organometallic polymers and materials, 2020-08, Vol.30 (8), p.2890-2906 |
issn | 1574-1443 1574-1451 |
language | eng |
recordid | cdi_proquest_journals_2423565227 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apatite Biocompatibility Biodegradability Biomedical materials Cementing Chemical synthesis Chemistry Chemistry and Materials Science Crosslinking Drug delivery systems E coli Functional groups Gamma irradiation Gamma rays Gelatin Hydroxyapatite Inorganic Chemistry Ketoprofen Magnesium Mechanical properties Nanocomposites Nanoparticles Organic Chemistry Polymer Sciences Porosity Regeneration Scaffolds Sterilization Tissue engineering Toxicity |
title | Radiation Synthesis of Magnesium Doped Nano Hydroxyapatite/(Acacia-Gelatin) Scaffold for Bone Tissue Regeneration: In Vitro Drug Release Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20Synthesis%20of%20Magnesium%20Doped%20Nano%20Hydroxyapatite/(Acacia-Gelatin)%20Scaffold%20for%20Bone%20Tissue%20Regeneration:%20In%20Vitro%20Drug%20Release%20Study&rft.jtitle=Journal%20of%20inorganic%20and%20organometallic%20polymers%20and%20materials&rft.au=Raafat,%20Amany%20I.&rft.date=2020-08-01&rft.volume=30&rft.issue=8&rft.spage=2890&rft.epage=2906&rft.pages=2890-2906&rft.issn=1574-1443&rft.eissn=1574-1451&rft_id=info:doi/10.1007/s10904-019-01418-3&rft_dat=%3Cproquest_cross%3E2423565227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423565227&rft_id=info:pmid/&rfr_iscdi=true |