Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners
Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2020-08, Vol.23 (4), p.625-633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | 4 |
container_start_page | 625 |
container_title | Journal of visualization |
container_volume | 23 |
creator | Heng, J. Thanapal, T. D. Chan, W. L. Elhadidi, B. |
description | Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner.
Graphic Abstract |
doi_str_mv | 10.1007/s12650-020-00653-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423565082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423565082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</originalsourceid><addsrcrecordid>eNp9kF9PwyAUxYnRxDn9Aj6R-IxS_rT0URd1Jkt80WfCGFhmWyZQl_rpZdbEN5NL7g2ccy75AXBZ4OsC4-omFqTkGGGSDy45ReMRmBWi4kjUFT_OM2UUiXxxCs5i3GJMClYVM7BdqZScNvDOt-mrU30Po-uGViXne5grNQba1u_h2jTq0_khQBWj104ls4F7lxq4NG3XHOxQZ0Ua0Vrp9_yotB9iDoet602I5-DEqjaai98-B68P9y-LJVo9Pz4tbldI05ImxAUvbb1hujKWYaJwjYVVgvENM4YYi7Wu6looxoTAjCgqDDdsXVJhmbac0jm4mnJ3wX8MJia5zb_u80pJGKE8gxIkq8ik0sHHGIyVu-A6FUZZYHlgKiemMjOVP0zlmE10MsUs7t9M-Iv-x_UNweJ8JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423565082</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><source>SpringerLink Journals - AutoHoldings</source><creator>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</creator><creatorcontrib>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</creatorcontrib><description>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner.
Graphic Abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-020-00653-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic absorption ; Acoustic liners ; Acoustic noise ; Acoustics ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer Imaging ; Computer simulation ; Configurations ; Energy dissipation ; Engine noise ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid flow ; Heat and Mass Transfer ; Helmholtz resonators ; Holes ; Jet engines ; Pattern Recognition and Graphics ; Regular Paper ; Vision ; Vortex shedding ; Vortices</subject><ispartof>Journal of visualization, 2020-08, Vol.23 (4), p.625-633</ispartof><rights>The Visualization Society of Japan 2020</rights><rights>The Visualization Society of Japan 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</citedby><cites>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</cites><orcidid>0000-0001-7557-3645 ; 0000-0002-8700-3655 ; 0000-0002-3692-7604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-020-00653-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-020-00653-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Heng, J.</creatorcontrib><creatorcontrib>Thanapal, T. D.</creatorcontrib><creatorcontrib>Chan, W. L.</creatorcontrib><creatorcontrib>Elhadidi, B.</creatorcontrib><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner.
Graphic Abstract</description><subject>Acoustic absorption</subject><subject>Acoustic liners</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Energy dissipation</subject><subject>Engine noise</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Helmholtz resonators</subject><subject>Holes</subject><subject>Jet engines</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Vision</subject><subject>Vortex shedding</subject><subject>Vortices</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9PwyAUxYnRxDn9Aj6R-IxS_rT0URd1Jkt80WfCGFhmWyZQl_rpZdbEN5NL7g2ccy75AXBZ4OsC4-omFqTkGGGSDy45ReMRmBWi4kjUFT_OM2UUiXxxCs5i3GJMClYVM7BdqZScNvDOt-mrU30Po-uGViXne5grNQba1u_h2jTq0_khQBWj104ls4F7lxq4NG3XHOxQZ0Ua0Vrp9_yotB9iDoet602I5-DEqjaai98-B68P9y-LJVo9Pz4tbldI05ImxAUvbb1hujKWYaJwjYVVgvENM4YYi7Wu6looxoTAjCgqDDdsXVJhmbac0jm4mnJ3wX8MJia5zb_u80pJGKE8gxIkq8ik0sHHGIyVu-A6FUZZYHlgKiemMjOVP0zlmE10MsUs7t9M-Iv-x_UNweJ8JQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Heng, J.</creator><creator>Thanapal, T. D.</creator><creator>Chan, W. L.</creator><creator>Elhadidi, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7557-3645</orcidid><orcidid>https://orcid.org/0000-0002-8700-3655</orcidid><orcidid>https://orcid.org/0000-0002-3692-7604</orcidid></search><sort><creationdate>20200801</creationdate><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><author>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic absorption</topic><topic>Acoustic liners</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Energy dissipation</topic><topic>Engine noise</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Helmholtz resonators</topic><topic>Holes</topic><topic>Jet engines</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Vision</topic><topic>Vortex shedding</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heng, J.</creatorcontrib><creatorcontrib>Thanapal, T. D.</creatorcontrib><creatorcontrib>Chan, W. L.</creatorcontrib><creatorcontrib>Elhadidi, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heng, J.</au><au>Thanapal, T. D.</au><au>Chan, W. L.</au><au>Elhadidi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>625</spage><epage>633</epage><pages>625-633</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner.
Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-020-00653-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7557-3645</orcidid><orcidid>https://orcid.org/0000-0002-8700-3655</orcidid><orcidid>https://orcid.org/0000-0002-3692-7604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2020-08, Vol.23 (4), p.625-633 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_2423565082 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustic absorption Acoustic liners Acoustic noise Acoustics Classical and Continuum Physics Computational fluid dynamics Computer Imaging Computer simulation Configurations Energy dissipation Engine noise Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid flow Heat and Mass Transfer Helmholtz resonators Holes Jet engines Pattern Recognition and Graphics Regular Paper Vision Vortex shedding Vortices |
title | Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20on%20the%20flow%20behaviour%20associated%20with%20Helmholtz%20cavity-backed%20acoustic%20liners&rft.jtitle=Journal%20of%20visualization&rft.au=Heng,%20J.&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=625&rft.epage=633&rft.pages=625-633&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-020-00653-y&rft_dat=%3Cproquest_cross%3E2423565082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423565082&rft_id=info:pmid/&rfr_iscdi=true |