Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners

Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2020-08, Vol.23 (4), p.625-633
Hauptverfasser: Heng, J., Thanapal, T. D., Chan, W. L., Elhadidi, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 4
container_start_page 625
container_title Journal of visualization
container_volume 23
creator Heng, J.
Thanapal, T. D.
Chan, W. L.
Elhadidi, B.
description Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner. Graphic Abstract
doi_str_mv 10.1007/s12650-020-00653-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423565082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423565082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</originalsourceid><addsrcrecordid>eNp9kF9PwyAUxYnRxDn9Aj6R-IxS_rT0URd1Jkt80WfCGFhmWyZQl_rpZdbEN5NL7g2ccy75AXBZ4OsC4-omFqTkGGGSDy45ReMRmBWi4kjUFT_OM2UUiXxxCs5i3GJMClYVM7BdqZScNvDOt-mrU30Po-uGViXne5grNQba1u_h2jTq0_khQBWj104ls4F7lxq4NG3XHOxQZ0Ua0Vrp9_yotB9iDoet602I5-DEqjaai98-B68P9y-LJVo9Pz4tbldI05ImxAUvbb1hujKWYaJwjYVVgvENM4YYi7Wu6looxoTAjCgqDDdsXVJhmbac0jm4mnJ3wX8MJia5zb_u80pJGKE8gxIkq8ik0sHHGIyVu-A6FUZZYHlgKiemMjOVP0zlmE10MsUs7t9M-Iv-x_UNweJ8JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423565082</pqid></control><display><type>article</type><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><source>SpringerLink Journals - AutoHoldings</source><creator>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</creator><creatorcontrib>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</creatorcontrib><description>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner. Graphic Abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-020-00653-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic absorption ; Acoustic liners ; Acoustic noise ; Acoustics ; Classical and Continuum Physics ; Computational fluid dynamics ; Computer Imaging ; Computer simulation ; Configurations ; Energy dissipation ; Engine noise ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid flow ; Heat and Mass Transfer ; Helmholtz resonators ; Holes ; Jet engines ; Pattern Recognition and Graphics ; Regular Paper ; Vision ; Vortex shedding ; Vortices</subject><ispartof>Journal of visualization, 2020-08, Vol.23 (4), p.625-633</ispartof><rights>The Visualization Society of Japan 2020</rights><rights>The Visualization Society of Japan 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</citedby><cites>FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</cites><orcidid>0000-0001-7557-3645 ; 0000-0002-8700-3655 ; 0000-0002-3692-7604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-020-00653-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-020-00653-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Heng, J.</creatorcontrib><creatorcontrib>Thanapal, T. D.</creatorcontrib><creatorcontrib>Chan, W. L.</creatorcontrib><creatorcontrib>Elhadidi, B.</creatorcontrib><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner. Graphic Abstract</description><subject>Acoustic absorption</subject><subject>Acoustic liners</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Energy dissipation</subject><subject>Engine noise</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Helmholtz resonators</subject><subject>Holes</subject><subject>Jet engines</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Vision</subject><subject>Vortex shedding</subject><subject>Vortices</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9PwyAUxYnRxDn9Aj6R-IxS_rT0URd1Jkt80WfCGFhmWyZQl_rpZdbEN5NL7g2ccy75AXBZ4OsC4-omFqTkGGGSDy45ReMRmBWi4kjUFT_OM2UUiXxxCs5i3GJMClYVM7BdqZScNvDOt-mrU30Po-uGViXne5grNQba1u_h2jTq0_khQBWj104ls4F7lxq4NG3XHOxQZ0Ua0Vrp9_yotB9iDoet602I5-DEqjaai98-B68P9y-LJVo9Pz4tbldI05ImxAUvbb1hujKWYaJwjYVVgvENM4YYi7Wu6looxoTAjCgqDDdsXVJhmbac0jm4mnJ3wX8MJia5zb_u80pJGKE8gxIkq8ik0sHHGIyVu-A6FUZZYHlgKiemMjOVP0zlmE10MsUs7t9M-Iv-x_UNweJ8JQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Heng, J.</creator><creator>Thanapal, T. D.</creator><creator>Chan, W. L.</creator><creator>Elhadidi, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7557-3645</orcidid><orcidid>https://orcid.org/0000-0002-8700-3655</orcidid><orcidid>https://orcid.org/0000-0002-3692-7604</orcidid></search><sort><creationdate>20200801</creationdate><title>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</title><author>Heng, J. ; Thanapal, T. D. ; Chan, W. L. ; Elhadidi, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5856f9d4c7ef402a0908fa845d4ee2ef0cc7998a4488042a38e5e4b638f4cf533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustic absorption</topic><topic>Acoustic liners</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Energy dissipation</topic><topic>Engine noise</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Helmholtz resonators</topic><topic>Holes</topic><topic>Jet engines</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Vision</topic><topic>Vortex shedding</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heng, J.</creatorcontrib><creatorcontrib>Thanapal, T. D.</creatorcontrib><creatorcontrib>Chan, W. L.</creatorcontrib><creatorcontrib>Elhadidi, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heng, J.</au><au>Thanapal, T. D.</au><au>Chan, W. L.</au><au>Elhadidi, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>23</volume><issue>4</issue><spage>625</spage><epage>633</epage><pages>625-633</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Noise from jet engines can be reduced by means of a Helmholtz cavity configuration. The resonance that occurs when a flow passes the neck of the Helmholtz resonator will dissipate acoustic energy. The mechanism for such dissipation is mainly due to the vortex shedding that occurs at the neck of the resonator where the vortex structures absorb acoustic energy and subsequently dissipate it through viscous effects. In this work, numerical simulations utilizing the lattice Boltzmann method are used to aid in visualizing the flow behaviour that is associated with Helmholtz cavity-backed acoustic liners. In both experiments and numerical simulations, the 1-neck cavity is found to result in an amplification of an applied acoustic source. For a 4-neck cavity, the configuration is able to achieve acoustic pressure reductions. Differences in the flow behaviour of the 1-neck and 4-neck cavities are detailed in this work. Results show that the stronger vortex shedding that occurs in the 4-neck cavity configuration could explain its increased effectiveness as a Helmholtz cavity-backed acoustic liner. Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-020-00653-y</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7557-3645</orcidid><orcidid>https://orcid.org/0000-0002-8700-3655</orcidid><orcidid>https://orcid.org/0000-0002-3692-7604</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2020-08, Vol.23 (4), p.625-633
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_2423565082
source SpringerLink Journals - AutoHoldings
subjects Acoustic absorption
Acoustic liners
Acoustic noise
Acoustics
Classical and Continuum Physics
Computational fluid dynamics
Computer Imaging
Computer simulation
Configurations
Energy dissipation
Engine noise
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid flow
Heat and Mass Transfer
Helmholtz resonators
Holes
Jet engines
Pattern Recognition and Graphics
Regular Paper
Vision
Vortex shedding
Vortices
title Lattice Boltzmann simulation on the flow behaviour associated with Helmholtz cavity-backed acoustic liners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Boltzmann%20simulation%20on%20the%20flow%20behaviour%20associated%20with%20Helmholtz%20cavity-backed%20acoustic%20liners&rft.jtitle=Journal%20of%20visualization&rft.au=Heng,%20J.&rft.date=2020-08-01&rft.volume=23&rft.issue=4&rft.spage=625&rft.epage=633&rft.pages=625-633&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-020-00653-y&rft_dat=%3Cproquest_cross%3E2423565082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423565082&rft_id=info:pmid/&rfr_iscdi=true