Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework
Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)(2)covalent organic framework (COF) can adsorb ibuprofen f...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-07, Vol.25 (14), p.3132, Article 3132 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 3132 |
container_title | Molecules (Basel, Switzerland) |
container_volume | 25 |
creator | Fernandes, Soraia P. S. Mellah, Abdelkarim Kovar, Petr Sarria, Marisa P. Psenicka, Milan Djamila, Harik Salonen, Laura M. Espina, Begona |
description | Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)(2)covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)(2)with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)(2)is an efficient adsorbent for the extraction of ibuprofen from natural waters as well. |
doi_str_mv | 10.3390/molecules25143132 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2423345039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e217fd9b8f6b431a9e08d979a67f0c1c</doaj_id><sourcerecordid>2423345039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-d46b96c91432ccfef290261a0fdc6722434aa75b41bcd8293b64ac2e796e7313</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCIfsAP4IIscawW_BV7fUFCUUtXqtpLEUdr4oyXLEm82E4L_x4vW1atuHDyyH7z5r15rqo3jL4XwtAPYxjQzQMmXjMpmODPqmMmOV0IKs3zR_VRdZLShlLOJKtfVkeCq5oqKo6r6_OfOYLLfZhI8GTVztsYPE7ExzCSa8hzhIF8hYwxkS-pn9YESBPuYMApk5u4hql35CLCiPchfn9VvfAwJHz9cJ5Wtxfnt83l4urm86r5dLVw0oi86KRqjXKmqObOefTcUK4YUN85pTmXQgLoupWsdd2SG9EqCY6jNgp1MXparfa0XYCN3cZ-hPjLBujtn4sQ1xZi7t2AFjnTvjPt0qu27AgM0mVntAGlPXXMFa6Pe67t3I7YueKrWH5C-vRl6r_ZdbizWhhNaV0I3j0QxPBjxpTtJsxxKvYtl1wIWVNhCortUS6GlCL6wwRG7S5N-0-apeftY2mHjr_xFcDZHnCPbfDJ9Tg5PMBoUVdrteR1qehua8v_Rzd9ht2vaMI8ZfEbCTq-fA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423345039</pqid></control><display><type>article</type><title>Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fernandes, Soraia P. S. ; Mellah, Abdelkarim ; Kovar, Petr ; Sarria, Marisa P. ; Psenicka, Milan ; Djamila, Harik ; Salonen, Laura M. ; Espina, Begona</creator><creatorcontrib>Fernandes, Soraia P. S. ; Mellah, Abdelkarim ; Kovar, Petr ; Sarria, Marisa P. ; Psenicka, Milan ; Djamila, Harik ; Salonen, Laura M. ; Espina, Begona</creatorcontrib><description>Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)(2)covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)(2)with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)(2)is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules25143132</identifier><identifier>PMID: 32650603</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject><![CDATA[Acetaminophen ; Adsorbents ; Adsorption ; Analgesics ; Binary mixtures ; Biochemistry & Molecular Biology ; Chemistry ; Chemistry, Multidisciplinary ; covalent organic frameworks ; Efficiency ; environmental water samples ; Estuaries ; Ibuprofen ; Ibuprofen - chemistry ; Ibuprofen - isolation & purification ; Lakes ; Life Sciences & Biomedicine ; Metal-Organic Frameworks - chemistry ; Natural waters ; Nonsteroidal anti-inflammatory drugs ; Organic contaminants ; Pharmaceutical industry ; pharmaceutical pollutants ; Pharmaceuticals ; Phenobarbital ; Phenobarbital - chemistry ; Phenobarbital - isolation & purification ; Physical Sciences ; Pore size ; Porous materials ; Salinity ; Science & Technology ; Surface water ; Wastewater treatment ; Water analysis ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - isolation & purification ; Water Purification ; Water sampling]]></subject><ispartof>Molecules (Basel, Switzerland), 2020-07, Vol.25 (14), p.3132, Article 3132</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557682500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-d46b96c91432ccfef290261a0fdc6722434aa75b41bcd8293b64ac2e796e7313</citedby><cites>FETCH-LOGICAL-c493t-d46b96c91432ccfef290261a0fdc6722434aa75b41bcd8293b64ac2e796e7313</cites><orcidid>0000-0001-5974-0124 ; 0000-0001-8194-6014 ; 0000-0002-5390-7015 ; 0000-0002-3374-8213 ; 0000-0002-7645-2834 ; 0000-0002-6665-8441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32650603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Soraia P. S.</creatorcontrib><creatorcontrib>Mellah, Abdelkarim</creatorcontrib><creatorcontrib>Kovar, Petr</creatorcontrib><creatorcontrib>Sarria, Marisa P.</creatorcontrib><creatorcontrib>Psenicka, Milan</creatorcontrib><creatorcontrib>Djamila, Harik</creatorcontrib><creatorcontrib>Salonen, Laura M.</creatorcontrib><creatorcontrib>Espina, Begona</creatorcontrib><title>Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework</title><title>Molecules (Basel, Switzerland)</title><addtitle>MOLECULES</addtitle><addtitle>Molecules</addtitle><description>Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)(2)covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)(2)with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)(2)is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.</description><subject>Acetaminophen</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Analgesics</subject><subject>Binary mixtures</subject><subject>Biochemistry & Molecular Biology</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>covalent organic frameworks</subject><subject>Efficiency</subject><subject>environmental water samples</subject><subject>Estuaries</subject><subject>Ibuprofen</subject><subject>Ibuprofen - chemistry</subject><subject>Ibuprofen - isolation & purification</subject><subject>Lakes</subject><subject>Life Sciences & Biomedicine</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Natural waters</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Organic contaminants</subject><subject>Pharmaceutical industry</subject><subject>pharmaceutical pollutants</subject><subject>Pharmaceuticals</subject><subject>Phenobarbital</subject><subject>Phenobarbital - chemistry</subject><subject>Phenobarbital - isolation & purification</subject><subject>Physical Sciences</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Salinity</subject><subject>Science & Technology</subject><subject>Surface water</subject><subject>Wastewater treatment</subject><subject>Water analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water Purification</subject><subject>Water sampling</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1v1DAQjRCIfsAP4IIscawW_BV7fUFCUUtXqtpLEUdr4oyXLEm82E4L_x4vW1atuHDyyH7z5r15rqo3jL4XwtAPYxjQzQMmXjMpmODPqmMmOV0IKs3zR_VRdZLShlLOJKtfVkeCq5oqKo6r6_OfOYLLfZhI8GTVztsYPE7ExzCSa8hzhIF8hYwxkS-pn9YESBPuYMApk5u4hql35CLCiPchfn9VvfAwJHz9cJ5Wtxfnt83l4urm86r5dLVw0oi86KRqjXKmqObOefTcUK4YUN85pTmXQgLoupWsdd2SG9EqCY6jNgp1MXparfa0XYCN3cZ-hPjLBujtn4sQ1xZi7t2AFjnTvjPt0qu27AgM0mVntAGlPXXMFa6Pe67t3I7YueKrWH5C-vRl6r_ZdbizWhhNaV0I3j0QxPBjxpTtJsxxKvYtl1wIWVNhCortUS6GlCL6wwRG7S5N-0-apeftY2mHjr_xFcDZHnCPbfDJ9Tg5PMBoUVdrteR1qehua8v_Rzd9ht2vaMI8ZfEbCTq-fA</recordid><startdate>20200708</startdate><enddate>20200708</enddate><creator>Fernandes, Soraia P. S.</creator><creator>Mellah, Abdelkarim</creator><creator>Kovar, Petr</creator><creator>Sarria, Marisa P.</creator><creator>Psenicka, Milan</creator><creator>Djamila, Harik</creator><creator>Salonen, Laura M.</creator><creator>Espina, Begona</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5974-0124</orcidid><orcidid>https://orcid.org/0000-0001-8194-6014</orcidid><orcidid>https://orcid.org/0000-0002-5390-7015</orcidid><orcidid>https://orcid.org/0000-0002-3374-8213</orcidid><orcidid>https://orcid.org/0000-0002-7645-2834</orcidid><orcidid>https://orcid.org/0000-0002-6665-8441</orcidid></search><sort><creationdate>20200708</creationdate><title>Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework</title><author>Fernandes, Soraia P. S. ; Mellah, Abdelkarim ; Kovar, Petr ; Sarria, Marisa P. ; Psenicka, Milan ; Djamila, Harik ; Salonen, Laura M. ; Espina, Begona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-d46b96c91432ccfef290261a0fdc6722434aa75b41bcd8293b64ac2e796e7313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetaminophen</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Analgesics</topic><topic>Binary mixtures</topic><topic>Biochemistry & Molecular Biology</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>covalent organic frameworks</topic><topic>Efficiency</topic><topic>environmental water samples</topic><topic>Estuaries</topic><topic>Ibuprofen</topic><topic>Ibuprofen - chemistry</topic><topic>Ibuprofen - isolation & purification</topic><topic>Lakes</topic><topic>Life Sciences & Biomedicine</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Natural waters</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Organic contaminants</topic><topic>Pharmaceutical industry</topic><topic>pharmaceutical pollutants</topic><topic>Pharmaceuticals</topic><topic>Phenobarbital</topic><topic>Phenobarbital - chemistry</topic><topic>Phenobarbital - isolation & purification</topic><topic>Physical Sciences</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Salinity</topic><topic>Science & Technology</topic><topic>Surface water</topic><topic>Wastewater treatment</topic><topic>Water analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water Purification</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Soraia P. S.</creatorcontrib><creatorcontrib>Mellah, Abdelkarim</creatorcontrib><creatorcontrib>Kovar, Petr</creatorcontrib><creatorcontrib>Sarria, Marisa P.</creatorcontrib><creatorcontrib>Psenicka, Milan</creatorcontrib><creatorcontrib>Djamila, Harik</creatorcontrib><creatorcontrib>Salonen, Laura M.</creatorcontrib><creatorcontrib>Espina, Begona</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Soraia P. S.</au><au>Mellah, Abdelkarim</au><au>Kovar, Petr</au><au>Sarria, Marisa P.</au><au>Psenicka, Milan</au><au>Djamila, Harik</au><au>Salonen, Laura M.</au><au>Espina, Begona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><stitle>MOLECULES</stitle><addtitle>Molecules</addtitle><date>2020-07-08</date><risdate>2020</risdate><volume>25</volume><issue>14</issue><spage>3132</spage><pages>3132-</pages><artnum>3132</artnum><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>Ibuprofen is one of the most widely used pharmaceuticals, and due to its inefficient removal by conventional wastewater treatment, it can be found in natural surface waters at high concentrations. Recently, we demonstrated that the TpBD-(CF3)(2)covalent organic framework (COF) can adsorb ibuprofen from ultrapure water with high efficiency. Here, we investigate the performance of the COF for the extraction of ibuprofen from natural water samples from a lake, river, and estuary. In general, the complexity of the natural water matrix induced a reduction in the adsorption efficiency of ibuprofen as compared to ultrapure water. The best performance, with over 70% adsorption efficiency, was found in lake water, the sample which featured the lowest pH. According to the theoretical calculations, ibuprofen more favorably interacts with the COF pores in the protonated form, which could partially account for the enhanced adsorption efficiency found in lake water. In addition, we explored the effect of the presence of competing pharmaceuticals, namely, acetaminophen and phenobarbital, on the ibuprofen adsorption as binary mixtures. Acetaminophen and phenobarbital were adsorbed by TpBD-(CF3)(2)with low efficiency and their presence led to an increase in ibuprofen adsorption in the binary mixtures. Overall, this study demonstrates that TpBD-(CF3)(2)is an efficient adsorbent for the extraction of ibuprofen from natural waters as well.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32650603</pmid><doi>10.3390/molecules25143132</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5974-0124</orcidid><orcidid>https://orcid.org/0000-0001-8194-6014</orcidid><orcidid>https://orcid.org/0000-0002-5390-7015</orcidid><orcidid>https://orcid.org/0000-0002-3374-8213</orcidid><orcidid>https://orcid.org/0000-0002-7645-2834</orcidid><orcidid>https://orcid.org/0000-0002-6665-8441</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-3049 |
ispartof | Molecules (Basel, Switzerland), 2020-07, Vol.25 (14), p.3132, Article 3132 |
issn | 1420-3049 1420-3049 |
language | eng |
recordid | cdi_proquest_journals_2423345039 |
source | MEDLINE; DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Acetaminophen Adsorbents Adsorption Analgesics Binary mixtures Biochemistry & Molecular Biology Chemistry Chemistry, Multidisciplinary covalent organic frameworks Efficiency environmental water samples Estuaries Ibuprofen Ibuprofen - chemistry Ibuprofen - isolation & purification Lakes Life Sciences & Biomedicine Metal-Organic Frameworks - chemistry Natural waters Nonsteroidal anti-inflammatory drugs Organic contaminants Pharmaceutical industry pharmaceutical pollutants Pharmaceuticals Phenobarbital Phenobarbital - chemistry Phenobarbital - isolation & purification Physical Sciences Pore size Porous materials Salinity Science & Technology Surface water Wastewater treatment Water analysis Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - isolation & purification Water Purification Water sampling |
title | Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20Ibuprofen%20from%20Natural%20Waters%20Using%20a%20Covalent%20Organic%20Framework&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Fernandes,%20Soraia%20P.%20S.&rft.date=2020-07-08&rft.volume=25&rft.issue=14&rft.spage=3132&rft.pages=3132-&rft.artnum=3132&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules25143132&rft_dat=%3Cproquest_doaj_%3E2423345039%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423345039&rft_id=info:pmid/32650603&rft_doaj_id=oai_doaj_org_article_e217fd9b8f6b431a9e08d979a67f0c1c&rfr_iscdi=true |