Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model

The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of wildlife research 2020-08, Vol.66 (4), Article 62
Hauptverfasser: Carl, Christin, Schönfeld, Fiona, Profft, Ingolf, Klamm, Alisa, Landgraf, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title European journal of wildlife research
container_volume 66
creator Carl, Christin
Schönfeld, Fiona
Profft, Ingolf
Klamm, Alisa
Landgraf, Dirk
description The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar ( Sus scrofa ), roe deer ( Capreolus capreolus ), or red fox ( Vulpes vulpes ) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.
doi_str_mv 10.1007/s10344-020-01404-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423341062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423341062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP5I0x6riJSFxgbO1TTbFVRMH26H0xk_HpUjcOO1o9c2OdrLsUsC1AChvggClNQcJHIQGzXdH2URoVXHIS32cdCEk14WWp9lZCGsAWYHKJ9nXfIyuw0gNayhSHa3rmWvZ7ejdQNizrd00rMOuww0LA9WWArM9q7Ejjyx6HJjtcJW2WxvfWHLQpw3R9qukGzZ44gmyfQqoXTeMkTz7sGEf07mGNufZSYubQBe_c5q93t2-LB740_P942L-xGslqsjzhlDQUs20XrZVi7Ml5ArrCpoyhwZaQlkiQStyRFGUONN5qVCKtiyWBdW5mmZXh7uDd-8jhWjWbvR9ijRSS6W0gEImSh6o2rsQPLVm8Ok9vzMCzL5pc2japKbNT9Nml0zqYAoJ7lfk_07_4_oGFkyEJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423341062</pqid></control><display><type>article</type><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><source>SpringerNature Complete Journals</source><creator>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</creator><creatorcontrib>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</creatorcontrib><description>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar ( Sus scrofa ), roe deer ( Capreolus capreolus ), or red fox ( Vulpes vulpes ) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</description><identifier>ISSN: 1612-4642</identifier><identifier>EISSN: 1439-0574</identifier><identifier>DOI: 10.1007/s10344-020-01404-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animal behavior ; Biomedical and Life Sciences ; Cameras ; Capreolus capreolus ; Classification ; Computer vision ; Deep learning ; Ecology ; Fish &amp; Wildlife Biology &amp; Management ; Image classification ; Image detection ; Infrared imagery ; Learning algorithms ; Life Sciences ; Machine learning ; Mammals ; Methods Paper ; Model accuracy ; Monitoring methods ; Object recognition ; Pictures ; Species ; Species classification ; Sus scrofa ; Vulpes vulpes ; Wild animals ; Wildlife ; Zoology</subject><ispartof>European journal of wildlife research, 2020-08, Vol.66 (4), Article 62</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</citedby><cites>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</cites><orcidid>0000-0002-2177-3542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10344-020-01404-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10344-020-01404-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carl, Christin</creatorcontrib><creatorcontrib>Schönfeld, Fiona</creatorcontrib><creatorcontrib>Profft, Ingolf</creatorcontrib><creatorcontrib>Klamm, Alisa</creatorcontrib><creatorcontrib>Landgraf, Dirk</creatorcontrib><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><title>European journal of wildlife research</title><addtitle>Eur J Wildl Res</addtitle><description>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar ( Sus scrofa ), roe deer ( Capreolus capreolus ), or red fox ( Vulpes vulpes ) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</description><subject>Algorithms</subject><subject>Animal behavior</subject><subject>Biomedical and Life Sciences</subject><subject>Cameras</subject><subject>Capreolus capreolus</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Ecology</subject><subject>Fish &amp; Wildlife Biology &amp; Management</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Infrared imagery</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mammals</subject><subject>Methods Paper</subject><subject>Model accuracy</subject><subject>Monitoring methods</subject><subject>Object recognition</subject><subject>Pictures</subject><subject>Species</subject><subject>Species classification</subject><subject>Sus scrofa</subject><subject>Vulpes vulpes</subject><subject>Wild animals</subject><subject>Wildlife</subject><subject>Zoology</subject><issn>1612-4642</issn><issn>1439-0574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP5I0x6riJSFxgbO1TTbFVRMH26H0xk_HpUjcOO1o9c2OdrLsUsC1AChvggClNQcJHIQGzXdH2URoVXHIS32cdCEk14WWp9lZCGsAWYHKJ9nXfIyuw0gNayhSHa3rmWvZ7ejdQNizrd00rMOuww0LA9WWArM9q7Ejjyx6HJjtcJW2WxvfWHLQpw3R9qukGzZ44gmyfQqoXTeMkTz7sGEf07mGNufZSYubQBe_c5q93t2-LB740_P942L-xGslqsjzhlDQUs20XrZVi7Ml5ArrCpoyhwZaQlkiQStyRFGUONN5qVCKtiyWBdW5mmZXh7uDd-8jhWjWbvR9ijRSS6W0gEImSh6o2rsQPLVm8Ok9vzMCzL5pc2japKbNT9Nml0zqYAoJ7lfk_07_4_oGFkyEJQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Carl, Christin</creator><creator>Schönfeld, Fiona</creator><creator>Profft, Ingolf</creator><creator>Klamm, Alisa</creator><creator>Landgraf, Dirk</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2177-3542</orcidid></search><sort><creationdate>20200801</creationdate><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><author>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Animal behavior</topic><topic>Biomedical and Life Sciences</topic><topic>Cameras</topic><topic>Capreolus capreolus</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Ecology</topic><topic>Fish &amp; Wildlife Biology &amp; Management</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Infrared imagery</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mammals</topic><topic>Methods Paper</topic><topic>Model accuracy</topic><topic>Monitoring methods</topic><topic>Object recognition</topic><topic>Pictures</topic><topic>Species</topic><topic>Species classification</topic><topic>Sus scrofa</topic><topic>Vulpes vulpes</topic><topic>Wild animals</topic><topic>Wildlife</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carl, Christin</creatorcontrib><creatorcontrib>Schönfeld, Fiona</creatorcontrib><creatorcontrib>Profft, Ingolf</creatorcontrib><creatorcontrib>Klamm, Alisa</creatorcontrib><creatorcontrib>Landgraf, Dirk</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of wildlife research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carl, Christin</au><au>Schönfeld, Fiona</au><au>Profft, Ingolf</au><au>Klamm, Alisa</au><au>Landgraf, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</atitle><jtitle>European journal of wildlife research</jtitle><stitle>Eur J Wildl Res</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>66</volume><issue>4</issue><artnum>62</artnum><issn>1612-4642</issn><eissn>1439-0574</eissn><abstract>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar ( Sus scrofa ), roe deer ( Capreolus capreolus ), or red fox ( Vulpes vulpes ) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10344-020-01404-y</doi><orcidid>https://orcid.org/0000-0002-2177-3542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-4642
ispartof European journal of wildlife research, 2020-08, Vol.66 (4), Article 62
issn 1612-4642
1439-0574
language eng
recordid cdi_proquest_journals_2423341062
source SpringerNature Complete Journals
subjects Algorithms
Animal behavior
Biomedical and Life Sciences
Cameras
Capreolus capreolus
Classification
Computer vision
Deep learning
Ecology
Fish & Wildlife Biology & Management
Image classification
Image detection
Infrared imagery
Learning algorithms
Life Sciences
Machine learning
Mammals
Methods Paper
Model accuracy
Monitoring methods
Object recognition
Pictures
Species
Species classification
Sus scrofa
Vulpes vulpes
Wild animals
Wildlife
Zoology
title Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20European%20wild%20mammal%20species%20in%20camera%20trap%20images%20with%20an%20existing%20and%20pre-trained%20computer%20vision%20model&rft.jtitle=European%20journal%20of%20wildlife%20research&rft.au=Carl,%20Christin&rft.date=2020-08-01&rft.volume=66&rft.issue=4&rft.artnum=62&rft.issn=1612-4642&rft.eissn=1439-0574&rft_id=info:doi/10.1007/s10344-020-01404-y&rft_dat=%3Cproquest_cross%3E2423341062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423341062&rft_id=info:pmid/&rfr_iscdi=true