Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model
The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image re...
Gespeichert in:
Veröffentlicht in: | European journal of wildlife research 2020-08, Vol.66 (4), Article 62 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | European journal of wildlife research |
container_volume | 66 |
creator | Carl, Christin Schönfeld, Fiona Profft, Ingolf Klamm, Alisa Landgraf, Dirk |
description | The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar (
Sus scrofa
), roe deer (
Capreolus capreolus
), or red fox (
Vulpes vulpes
) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient. |
doi_str_mv | 10.1007/s10344-020-01404-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2423341062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423341062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP5I0x6riJSFxgbO1TTbFVRMH26H0xk_HpUjcOO1o9c2OdrLsUsC1AChvggClNQcJHIQGzXdH2URoVXHIS32cdCEk14WWp9lZCGsAWYHKJ9nXfIyuw0gNayhSHa3rmWvZ7ejdQNizrd00rMOuww0LA9WWArM9q7Ejjyx6HJjtcJW2WxvfWHLQpw3R9qukGzZ44gmyfQqoXTeMkTz7sGEf07mGNufZSYubQBe_c5q93t2-LB740_P942L-xGslqsjzhlDQUs20XrZVi7Ml5ArrCpoyhwZaQlkiQStyRFGUONN5qVCKtiyWBdW5mmZXh7uDd-8jhWjWbvR9ijRSS6W0gEImSh6o2rsQPLVm8Ok9vzMCzL5pc2japKbNT9Nml0zqYAoJ7lfk_07_4_oGFkyEJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423341062</pqid></control><display><type>article</type><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><source>SpringerNature Complete Journals</source><creator>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</creator><creatorcontrib>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</creatorcontrib><description>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar (
Sus scrofa
), roe deer (
Capreolus capreolus
), or red fox (
Vulpes vulpes
) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</description><identifier>ISSN: 1612-4642</identifier><identifier>EISSN: 1439-0574</identifier><identifier>DOI: 10.1007/s10344-020-01404-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animal behavior ; Biomedical and Life Sciences ; Cameras ; Capreolus capreolus ; Classification ; Computer vision ; Deep learning ; Ecology ; Fish & Wildlife Biology & Management ; Image classification ; Image detection ; Infrared imagery ; Learning algorithms ; Life Sciences ; Machine learning ; Mammals ; Methods Paper ; Model accuracy ; Monitoring methods ; Object recognition ; Pictures ; Species ; Species classification ; Sus scrofa ; Vulpes vulpes ; Wild animals ; Wildlife ; Zoology</subject><ispartof>European journal of wildlife research, 2020-08, Vol.66 (4), Article 62</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</citedby><cites>FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</cites><orcidid>0000-0002-2177-3542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10344-020-01404-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10344-020-01404-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carl, Christin</creatorcontrib><creatorcontrib>Schönfeld, Fiona</creatorcontrib><creatorcontrib>Profft, Ingolf</creatorcontrib><creatorcontrib>Klamm, Alisa</creatorcontrib><creatorcontrib>Landgraf, Dirk</creatorcontrib><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><title>European journal of wildlife research</title><addtitle>Eur J Wildl Res</addtitle><description>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar (
Sus scrofa
), roe deer (
Capreolus capreolus
), or red fox (
Vulpes vulpes
) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</description><subject>Algorithms</subject><subject>Animal behavior</subject><subject>Biomedical and Life Sciences</subject><subject>Cameras</subject><subject>Capreolus capreolus</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>Ecology</subject><subject>Fish & Wildlife Biology & Management</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Infrared imagery</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mammals</subject><subject>Methods Paper</subject><subject>Model accuracy</subject><subject>Monitoring methods</subject><subject>Object recognition</subject><subject>Pictures</subject><subject>Species</subject><subject>Species classification</subject><subject>Sus scrofa</subject><subject>Vulpes vulpes</subject><subject>Wild animals</subject><subject>Wildlife</subject><subject>Zoology</subject><issn>1612-4642</issn><issn>1439-0574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP5I0x6riJSFxgbO1TTbFVRMH26H0xk_HpUjcOO1o9c2OdrLsUsC1AChvggClNQcJHIQGzXdH2URoVXHIS32cdCEk14WWp9lZCGsAWYHKJ9nXfIyuw0gNayhSHa3rmWvZ7ejdQNizrd00rMOuww0LA9WWArM9q7Ejjyx6HJjtcJW2WxvfWHLQpw3R9qukGzZ44gmyfQqoXTeMkTz7sGEf07mGNufZSYubQBe_c5q93t2-LB740_P942L-xGslqsjzhlDQUs20XrZVi7Ml5ArrCpoyhwZaQlkiQStyRFGUONN5qVCKtiyWBdW5mmZXh7uDd-8jhWjWbvR9ijRSS6W0gEImSh6o2rsQPLVm8Ok9vzMCzL5pc2japKbNT9Nml0zqYAoJ7lfk_07_4_oGFkyEJQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Carl, Christin</creator><creator>Schönfeld, Fiona</creator><creator>Profft, Ingolf</creator><creator>Klamm, Alisa</creator><creator>Landgraf, Dirk</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7SN</scope><scope>7X2</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2177-3542</orcidid></search><sort><creationdate>20200801</creationdate><title>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</title><author>Carl, Christin ; Schönfeld, Fiona ; Profft, Ingolf ; Klamm, Alisa ; Landgraf, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5dea1eb3844bf9fa8b053ac90d750d0fea27ae0f15aa167a84573a21f76b6ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Animal behavior</topic><topic>Biomedical and Life Sciences</topic><topic>Cameras</topic><topic>Capreolus capreolus</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>Ecology</topic><topic>Fish & Wildlife Biology & Management</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Infrared imagery</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mammals</topic><topic>Methods Paper</topic><topic>Model accuracy</topic><topic>Monitoring methods</topic><topic>Object recognition</topic><topic>Pictures</topic><topic>Species</topic><topic>Species classification</topic><topic>Sus scrofa</topic><topic>Vulpes vulpes</topic><topic>Wild animals</topic><topic>Wildlife</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carl, Christin</creatorcontrib><creatorcontrib>Schönfeld, Fiona</creatorcontrib><creatorcontrib>Profft, Ingolf</creatorcontrib><creatorcontrib>Klamm, Alisa</creatorcontrib><creatorcontrib>Landgraf, Dirk</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>European journal of wildlife research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carl, Christin</au><au>Schönfeld, Fiona</au><au>Profft, Ingolf</au><au>Klamm, Alisa</au><au>Landgraf, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model</atitle><jtitle>European journal of wildlife research</jtitle><stitle>Eur J Wildl Res</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>66</volume><issue>4</issue><artnum>62</artnum><issn>1612-4642</issn><eissn>1439-0574</eissn><abstract>The use of camera traps is a nonintrusive monitoring method to obtain valuable information about the appearance and behavior of wild animals. However, each study generates thousands of pictures and extracting information remains mostly an expensive, time-consuming manual task. Nevertheless, image recognition and analyzing technologies combined with machine learning algorithms, particularly deep learning models, improve and speed up the analysis process. Therefore, we tested the usability of a pre-trained deep learning model available on the TensorFlow hub–FasterRCNN+InceptionResNet V2 network applied to images of ten different European wild mammal species such as wild boar (
Sus scrofa
), roe deer (
Capreolus capreolus
), or red fox (
Vulpes vulpes
) in color as well as black and white infrared images. We found that the detection rate of the correct region of interest (region of the animal) was 94%. The classification accuracy was 71% for the correct species’ name as mammals and 93% for the correct species or higher taxonomic ranks such as “carnivore” as order. In 7% of cases, the classification was incorrect as the wrong species’ name was classified. In this technical note, we have shown the potential of an existing and pre-trained image classification model for wildlife animal detection, classification, and analysis. A specific training of the model on European wild mammal species could further increase the detection and classification accuracy of the models. Analysis of camera trap images could thus become considerably faster, less expensive, and more efficient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10344-020-01404-y</doi><orcidid>https://orcid.org/0000-0002-2177-3542</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-4642 |
ispartof | European journal of wildlife research, 2020-08, Vol.66 (4), Article 62 |
issn | 1612-4642 1439-0574 |
language | eng |
recordid | cdi_proquest_journals_2423341062 |
source | SpringerNature Complete Journals |
subjects | Algorithms Animal behavior Biomedical and Life Sciences Cameras Capreolus capreolus Classification Computer vision Deep learning Ecology Fish & Wildlife Biology & Management Image classification Image detection Infrared imagery Learning algorithms Life Sciences Machine learning Mammals Methods Paper Model accuracy Monitoring methods Object recognition Pictures Species Species classification Sus scrofa Vulpes vulpes Wild animals Wildlife Zoology |
title | Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20European%20wild%20mammal%20species%20in%20camera%20trap%20images%20with%20an%20existing%20and%20pre-trained%20computer%20vision%20model&rft.jtitle=European%20journal%20of%20wildlife%20research&rft.au=Carl,%20Christin&rft.date=2020-08-01&rft.volume=66&rft.issue=4&rft.artnum=62&rft.issn=1612-4642&rft.eissn=1439-0574&rft_id=info:doi/10.1007/s10344-020-01404-y&rft_dat=%3Cproquest_cross%3E2423341062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423341062&rft_id=info:pmid/&rfr_iscdi=true |