Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor
The polyamic acid (PAA) and polyvinylpyrrolidone (PVP) blends electrospun fibers were prepared by electrospinning method. PAA with high carbon conversion served as carbon nanofibers; PVP with low carbon conversion served as porogenic sacrificial agent. Then, the PAA-PVP-based carbon nanofibers with...
Gespeichert in:
Veröffentlicht in: | Ionics 2020-08, Vol.26 (8), p.4103-4111 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4111 |
---|---|
container_issue | 8 |
container_start_page | 4103 |
container_title | Ionics |
container_volume | 26 |
creator | He, Tie-Shi Yu, Xiao-Dong Bai, Tian-Jiao Li, Xiang-Ye Fu, Yi-Ran Cai, Ke-Di |
description | The polyamic acid (PAA) and polyvinylpyrrolidone (PVP) blends electrospun fibers were prepared by electrospinning method. PAA with high carbon conversion served as carbon nanofibers; PVP with low carbon conversion served as porogenic sacrificial agent. Then, the PAA-PVP-based carbon nanofibers with well-controlled meso/macro pore structure were obtained via thermally induced phase separation process. The morphology and electrochemical performance of porous carbon nanofibers are investigated by structural analysis and electrochemical measurements. The relationship among pore structure, character of electrolyte and electrochemical performance of porous carbon nanofibers was extensively evaluated. Porous carbon nanofibers derived from PAA-PVP (mass ratio = 5:2) electrospun fibers show adjustable average pore diameter (3.1 nm), high BET specific surface area (743.5 m
2
g
−1
), and average pore volume (0.126 cm
3
g
−1
). The supercapacitor constructed by porous nanofibers as electrode in ionic liquids electrolyte exhibits wide electrochemical stability window (3.4 V), high specific capacity (211.7 F g
−1
), good power density (2021 W kg
−1
), and low internal resistance (1.0 Ω). The findings reveal a guideline of the preparation of blending polymer-based porous carbon nanofibers for electrochemical energy conversion and storage.
Graphical abstract |
doi_str_mv | 10.1007/s11581-020-03529-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2422818300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422818300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-142f5c3a900dd2bc77cc9557d74a1d6e70c117b87c1443078593127572ceea0b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19F7k7Zpl8PgCwYs-NiGNE2lw0xTb1rBf2-1A-5c3c13zj18jF0iXCOAvomIaY4CJAhQqSwEHrEF5pkUoDM4ZgsoEi00JPqUncW4BcgylHrBnstAYYzcWapCxzvbhaatPEVee2o_fc0bCnterlaifCu533k3UIj92PED1wTicew9Odtb1w6BztlJY3fRXxzukr3e3b6sH8Tm6f5xvdoIp7AYBCaySZ2yBUBdy8pp7VyRprrWicU68xocoq5y7TBJFOg8LdS0OdXSeW-hUkt2Nff2FD5GHwezDSN100sjEylzzBXARMmZctPuSL4xPbV7S18GwfzIM7M8M8kzv_IMTiE1h-IEd--e_qr_SX0DRW9xaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422818300</pqid></control><display><type>article</type><title>Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor</title><source>Springer Nature - Complete Springer Journals</source><creator>He, Tie-Shi ; Yu, Xiao-Dong ; Bai, Tian-Jiao ; Li, Xiang-Ye ; Fu, Yi-Ran ; Cai, Ke-Di</creator><creatorcontrib>He, Tie-Shi ; Yu, Xiao-Dong ; Bai, Tian-Jiao ; Li, Xiang-Ye ; Fu, Yi-Ran ; Cai, Ke-Di</creatorcontrib><description>The polyamic acid (PAA) and polyvinylpyrrolidone (PVP) blends electrospun fibers were prepared by electrospinning method. PAA with high carbon conversion served as carbon nanofibers; PVP with low carbon conversion served as porogenic sacrificial agent. Then, the PAA-PVP-based carbon nanofibers with well-controlled meso/macro pore structure were obtained via thermally induced phase separation process. The morphology and electrochemical performance of porous carbon nanofibers are investigated by structural analysis and electrochemical measurements. The relationship among pore structure, character of electrolyte and electrochemical performance of porous carbon nanofibers was extensively evaluated. Porous carbon nanofibers derived from PAA-PVP (mass ratio = 5:2) electrospun fibers show adjustable average pore diameter (3.1 nm), high BET specific surface area (743.5 m
2
g
−1
), and average pore volume (0.126 cm
3
g
−1
). The supercapacitor constructed by porous nanofibers as electrode in ionic liquids electrolyte exhibits wide electrochemical stability window (3.4 V), high specific capacity (211.7 F g
−1
), good power density (2021 W kg
−1
), and low internal resistance (1.0 Ω). The findings reveal a guideline of the preparation of blending polymer-based porous carbon nanofibers for electrochemical energy conversion and storage.
Graphical abstract</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03529-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon fibers ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Diameters ; Electrochemical analysis ; Electrochemistry ; Electrolytes ; Electrospinning ; Energy conversion ; Energy Storage ; Ionic liquids ; Ions ; Morphology ; Nanofibers ; Optical and Electronic Materials ; Original Paper ; Phase separation ; Polyvinylpyrrolidone ; Porosity ; Renewable and Green Energy ; Structural analysis ; Supercapacitors</subject><ispartof>Ionics, 2020-08, Vol.26 (8), p.4103-4111</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-142f5c3a900dd2bc77cc9557d74a1d6e70c117b87c1443078593127572ceea0b3</citedby><cites>FETCH-LOGICAL-c319t-142f5c3a900dd2bc77cc9557d74a1d6e70c117b87c1443078593127572ceea0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03529-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03529-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>He, Tie-Shi</creatorcontrib><creatorcontrib>Yu, Xiao-Dong</creatorcontrib><creatorcontrib>Bai, Tian-Jiao</creatorcontrib><creatorcontrib>Li, Xiang-Ye</creatorcontrib><creatorcontrib>Fu, Yi-Ran</creatorcontrib><creatorcontrib>Cai, Ke-Di</creatorcontrib><title>Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The polyamic acid (PAA) and polyvinylpyrrolidone (PVP) blends electrospun fibers were prepared by electrospinning method. PAA with high carbon conversion served as carbon nanofibers; PVP with low carbon conversion served as porogenic sacrificial agent. Then, the PAA-PVP-based carbon nanofibers with well-controlled meso/macro pore structure were obtained via thermally induced phase separation process. The morphology and electrochemical performance of porous carbon nanofibers are investigated by structural analysis and electrochemical measurements. The relationship among pore structure, character of electrolyte and electrochemical performance of porous carbon nanofibers was extensively evaluated. Porous carbon nanofibers derived from PAA-PVP (mass ratio = 5:2) electrospun fibers show adjustable average pore diameter (3.1 nm), high BET specific surface area (743.5 m
2
g
−1
), and average pore volume (0.126 cm
3
g
−1
). The supercapacitor constructed by porous nanofibers as electrode in ionic liquids electrolyte exhibits wide electrochemical stability window (3.4 V), high specific capacity (211.7 F g
−1
), good power density (2021 W kg
−1
), and low internal resistance (1.0 Ω). The findings reveal a guideline of the preparation of blending polymer-based porous carbon nanofibers for electrochemical energy conversion and storage.
Graphical abstract</description><subject>Carbon fibers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diameters</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrospinning</subject><subject>Energy conversion</subject><subject>Energy Storage</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Phase separation</subject><subject>Polyvinylpyrrolidone</subject><subject>Porosity</subject><subject>Renewable and Green Energy</subject><subject>Structural analysis</subject><subject>Supercapacitors</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19F7k7Zpl8PgCwYs-NiGNE2lw0xTb1rBf2-1A-5c3c13zj18jF0iXCOAvomIaY4CJAhQqSwEHrEF5pkUoDM4ZgsoEi00JPqUncW4BcgylHrBnstAYYzcWapCxzvbhaatPEVee2o_fc0bCnterlaifCu533k3UIj92PED1wTicew9Odtb1w6BztlJY3fRXxzukr3e3b6sH8Tm6f5xvdoIp7AYBCaySZ2yBUBdy8pp7VyRprrWicU68xocoq5y7TBJFOg8LdS0OdXSeW-hUkt2Nff2FD5GHwezDSN100sjEylzzBXARMmZctPuSL4xPbV7S18GwfzIM7M8M8kzv_IMTiE1h-IEd--e_qr_SX0DRW9xaQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>He, Tie-Shi</creator><creator>Yu, Xiao-Dong</creator><creator>Bai, Tian-Jiao</creator><creator>Li, Xiang-Ye</creator><creator>Fu, Yi-Ran</creator><creator>Cai, Ke-Di</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor</title><author>He, Tie-Shi ; Yu, Xiao-Dong ; Bai, Tian-Jiao ; Li, Xiang-Ye ; Fu, Yi-Ran ; Cai, Ke-Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-142f5c3a900dd2bc77cc9557d74a1d6e70c117b87c1443078593127572ceea0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon fibers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diameters</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrospinning</topic><topic>Energy conversion</topic><topic>Energy Storage</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Phase separation</topic><topic>Polyvinylpyrrolidone</topic><topic>Porosity</topic><topic>Renewable and Green Energy</topic><topic>Structural analysis</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Tie-Shi</creatorcontrib><creatorcontrib>Yu, Xiao-Dong</creatorcontrib><creatorcontrib>Bai, Tian-Jiao</creatorcontrib><creatorcontrib>Li, Xiang-Ye</creatorcontrib><creatorcontrib>Fu, Yi-Ran</creatorcontrib><creatorcontrib>Cai, Ke-Di</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Tie-Shi</au><au>Yu, Xiao-Dong</au><au>Bai, Tian-Jiao</au><au>Li, Xiang-Ye</au><au>Fu, Yi-Ran</au><au>Cai, Ke-Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>26</volume><issue>8</issue><spage>4103</spage><epage>4111</epage><pages>4103-4111</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The polyamic acid (PAA) and polyvinylpyrrolidone (PVP) blends electrospun fibers were prepared by electrospinning method. PAA with high carbon conversion served as carbon nanofibers; PVP with low carbon conversion served as porogenic sacrificial agent. Then, the PAA-PVP-based carbon nanofibers with well-controlled meso/macro pore structure were obtained via thermally induced phase separation process. The morphology and electrochemical performance of porous carbon nanofibers are investigated by structural analysis and electrochemical measurements. The relationship among pore structure, character of electrolyte and electrochemical performance of porous carbon nanofibers was extensively evaluated. Porous carbon nanofibers derived from PAA-PVP (mass ratio = 5:2) electrospun fibers show adjustable average pore diameter (3.1 nm), high BET specific surface area (743.5 m
2
g
−1
), and average pore volume (0.126 cm
3
g
−1
). The supercapacitor constructed by porous nanofibers as electrode in ionic liquids electrolyte exhibits wide electrochemical stability window (3.4 V), high specific capacity (211.7 F g
−1
), good power density (2021 W kg
−1
), and low internal resistance (1.0 Ω). The findings reveal a guideline of the preparation of blending polymer-based porous carbon nanofibers for electrochemical energy conversion and storage.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03529-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2020-08, Vol.26 (8), p.4103-4111 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2422818300 |
source | Springer Nature - Complete Springer Journals |
subjects | Carbon fibers Chemistry Chemistry and Materials Science Condensed Matter Physics Diameters Electrochemical analysis Electrochemistry Electrolytes Electrospinning Energy conversion Energy Storage Ionic liquids Ions Morphology Nanofibers Optical and Electronic Materials Original Paper Phase separation Polyvinylpyrrolidone Porosity Renewable and Green Energy Structural analysis Supercapacitors |
title | Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20carbon%20nanofibers%20derived%20from%20PAA-PVP%20electrospun%20fibers%20for%20supercapacitor&rft.jtitle=Ionics&rft.au=He,%20Tie-Shi&rft.date=2020-08-01&rft.volume=26&rft.issue=8&rft.spage=4103&rft.epage=4111&rft.pages=4103-4111&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03529-1&rft_dat=%3Cproquest_cross%3E2422818300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422818300&rft_id=info:pmid/&rfr_iscdi=true |