A level set method for simulating wrinkling of extruded viscoelastic sheets
When a polymer is extruded freely from a rectangular die of large cross‐sectional aspect ratio, wrinkles are observed. While not present in extruded Newtonian materials, such wrinkles develop in extruded viscoelastic sheets and are understood as an elastic stress‐driven instability. The present stud...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2020-07, Vol.60 (7), p.1662-1675 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1675 |
---|---|
container_issue | 7 |
container_start_page | 1662 |
container_title | Polymer engineering and science |
container_volume | 60 |
creator | Kabanemi, Kalonji K. Marcotte, Jean‐Philippe |
description | When a polymer is extruded freely from a rectangular die of large cross‐sectional aspect ratio, wrinkles are observed. While not present in extruded Newtonian materials, such wrinkles develop in extruded viscoelastic sheets and are understood as an elastic stress‐driven instability. The present study is devoted in developing a transient finite element method, which combines the matrix‐logarithm‐based formulation of the conformation tensor and the single‐phase level set method, for simulating wrinkles that form during sheet extrusion of viscoelastic fluids. Numerical analyses of sheet extrusion were conducted over a wide range of flow rate and width‐to‐thickness ratio of the die exit cross section, χ, to determine critical conditions for the onset of wrinkling of extruded sheets. For large aspect ratios, that is, χ >> 1, wrinkles develop at moderate extrusion flow rate, corresponding to a Weissenberg number of about 29. Calculations based on Rayleigh's energy method show that the critical compressive stress, σc, for the onset of wrinkling of an elastic sheet scales like σc~1/χ2, with a significant drop for χ >> 1. As next to the die exit lip, compressive normal stresses are induced in the extruded sheet, wrinkling will take place for large χ (σc being small), in accordance with numerical predictions.
Predicted parison shape during free extrusion from a rectangular die with a large width‐to‐thickness ratio of the die exit cross section L/h = 125 (thickness h = 8 mm and width L = 1000 mm) at flow rate Q = 450 kg/h: A, Newtonian fluid, B, viscoelastic PTT fluid showing sinusoidal wrinkles (HDPE Lupolen data in Table 1). |
doi_str_mv | 10.1002/pen.25409 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2422434854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632210541</galeid><sourcerecordid>A632210541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5109-c73125033b2f0d3390440b8e6637dae0a7655b6fee44fba9bef15e063744e1f53</originalsourceid><addsrcrecordid>eNp10l9rFDEQAPAgFjyrD_0GAZ8E95q_e7uPR2m1tGhR-xyyu5O91N3Nmcm29tub9gQ9OAkkIfnNZAhDyAlnS86YON3CtBRasfoFWXCtqkKUUr0kC8akKGRVVa_Ia8Q7lq3U9YJcrekA9zBQhERHSJvQURciRT_Og01-6ulD9NOP4WkXHIVfKc4ddPTeYxtgsJh8S3EDkPANOXJ2QHj7Zz0mtxfn388-FddfPl6era-LVnNWF-1KcqGZlI1wrJOyZkqxpoKylKvOArOrUuumdABKucbWDTiugeVbpYA7LY_Ju13ebQw_Z8Bk7sIcp_ykEUoIJVWl1V_V2wGMn1xI0bZjLtusSykEZ1rxrIoDqocJoh3CBM7n4z2_PODz6GD07cGA93sB2aT8ib2dEc3lt6_79sM_tpnRT4B5Qt9vEu5CDqVuY0CM4Mw2-tHGR8OZeeoGk7vBPHdDtqc7-5Dre_w_NDfnn3cRvwHR-rJH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422434854</pqid></control><display><type>article</type><title>A level set method for simulating wrinkling of extruded viscoelastic sheets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kabanemi, Kalonji K. ; Marcotte, Jean‐Philippe</creator><creatorcontrib>Kabanemi, Kalonji K. ; Marcotte, Jean‐Philippe</creatorcontrib><description>When a polymer is extruded freely from a rectangular die of large cross‐sectional aspect ratio, wrinkles are observed. While not present in extruded Newtonian materials, such wrinkles develop in extruded viscoelastic sheets and are understood as an elastic stress‐driven instability. The present study is devoted in developing a transient finite element method, which combines the matrix‐logarithm‐based formulation of the conformation tensor and the single‐phase level set method, for simulating wrinkles that form during sheet extrusion of viscoelastic fluids. Numerical analyses of sheet extrusion were conducted over a wide range of flow rate and width‐to‐thickness ratio of the die exit cross section, χ, to determine critical conditions for the onset of wrinkling of extruded sheets. For large aspect ratios, that is, χ >> 1, wrinkles develop at moderate extrusion flow rate, corresponding to a Weissenberg number of about 29. Calculations based on Rayleigh's energy method show that the critical compressive stress, σc, for the onset of wrinkling of an elastic sheet scales like σc~1/χ2, with a significant drop for χ >> 1. As next to the die exit lip, compressive normal stresses are induced in the extruded sheet, wrinkling will take place for large χ (σc being small), in accordance with numerical predictions.
Predicted parison shape during free extrusion from a rectangular die with a large width‐to‐thickness ratio of the die exit cross section L/h = 125 (thickness h = 8 mm and width L = 1000 mm) at flow rate Q = 450 kg/h: A, Newtonian fluid, B, viscoelastic PTT fluid showing sinusoidal wrinkles (HDPE Lupolen data in Table 1).</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25409</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Analysis ; Aspect ratio ; Compacting ; Compressive properties ; Computational fluid dynamics ; Computer simulation ; die swell ; Elastic sheets ; energy method ; Energy methods ; Extrusion dies ; Extrusion rate ; Finite element method ; Flow velocity ; instability ; level set method ; Mathematical analysis ; Methods ; Numerical analysis ; Numerical prediction ; sheet extrusion ; Tensors ; Thickness ratio ; viscoelastic fluid ; Viscoelastic fluids ; Viscoelasticity ; Wrinkling</subject><ispartof>Polymer engineering and science, 2020-07, Vol.60 (7), p.1662-1675</ispartof><rights>2020 Her Majesty the Queen in Right of Canada</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><rights>2020 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5109-c73125033b2f0d3390440b8e6637dae0a7655b6fee44fba9bef15e063744e1f53</citedby><cites>FETCH-LOGICAL-c5109-c73125033b2f0d3390440b8e6637dae0a7655b6fee44fba9bef15e063744e1f53</cites><orcidid>0000-0003-3995-391X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Kabanemi, Kalonji K.</creatorcontrib><creatorcontrib>Marcotte, Jean‐Philippe</creatorcontrib><title>A level set method for simulating wrinkling of extruded viscoelastic sheets</title><title>Polymer engineering and science</title><description>When a polymer is extruded freely from a rectangular die of large cross‐sectional aspect ratio, wrinkles are observed. While not present in extruded Newtonian materials, such wrinkles develop in extruded viscoelastic sheets and are understood as an elastic stress‐driven instability. The present study is devoted in developing a transient finite element method, which combines the matrix‐logarithm‐based formulation of the conformation tensor and the single‐phase level set method, for simulating wrinkles that form during sheet extrusion of viscoelastic fluids. Numerical analyses of sheet extrusion were conducted over a wide range of flow rate and width‐to‐thickness ratio of the die exit cross section, χ, to determine critical conditions for the onset of wrinkling of extruded sheets. For large aspect ratios, that is, χ >> 1, wrinkles develop at moderate extrusion flow rate, corresponding to a Weissenberg number of about 29. Calculations based on Rayleigh's energy method show that the critical compressive stress, σc, for the onset of wrinkling of an elastic sheet scales like σc~1/χ2, with a significant drop for χ >> 1. As next to the die exit lip, compressive normal stresses are induced in the extruded sheet, wrinkling will take place for large χ (σc being small), in accordance with numerical predictions.
Predicted parison shape during free extrusion from a rectangular die with a large width‐to‐thickness ratio of the die exit cross section L/h = 125 (thickness h = 8 mm and width L = 1000 mm) at flow rate Q = 450 kg/h: A, Newtonian fluid, B, viscoelastic PTT fluid showing sinusoidal wrinkles (HDPE Lupolen data in Table 1).</description><subject>Analysis</subject><subject>Aspect ratio</subject><subject>Compacting</subject><subject>Compressive properties</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>die swell</subject><subject>Elastic sheets</subject><subject>energy method</subject><subject>Energy methods</subject><subject>Extrusion dies</subject><subject>Extrusion rate</subject><subject>Finite element method</subject><subject>Flow velocity</subject><subject>instability</subject><subject>level set method</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical prediction</subject><subject>sheet extrusion</subject><subject>Tensors</subject><subject>Thickness ratio</subject><subject>viscoelastic fluid</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Wrinkling</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10l9rFDEQAPAgFjyrD_0GAZ8E95q_e7uPR2m1tGhR-xyyu5O91N3Nmcm29tub9gQ9OAkkIfnNZAhDyAlnS86YON3CtBRasfoFWXCtqkKUUr0kC8akKGRVVa_Ia8Q7lq3U9YJcrekA9zBQhERHSJvQURciRT_Og01-6ulD9NOP4WkXHIVfKc4ddPTeYxtgsJh8S3EDkPANOXJ2QHj7Zz0mtxfn388-FddfPl6era-LVnNWF-1KcqGZlI1wrJOyZkqxpoKylKvOArOrUuumdABKucbWDTiugeVbpYA7LY_Ju13ebQw_Z8Bk7sIcp_ykEUoIJVWl1V_V2wGMn1xI0bZjLtusSykEZ1rxrIoDqocJoh3CBM7n4z2_PODz6GD07cGA93sB2aT8ib2dEc3lt6_79sM_tpnRT4B5Qt9vEu5CDqVuY0CM4Mw2-tHGR8OZeeoGk7vBPHdDtqc7-5Dre_w_NDfnn3cRvwHR-rJH</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Kabanemi, Kalonji K.</creator><creator>Marcotte, Jean‐Philippe</creator><general>John Wiley & Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3995-391X</orcidid></search><sort><creationdate>202007</creationdate><title>A level set method for simulating wrinkling of extruded viscoelastic sheets</title><author>Kabanemi, Kalonji K. ; Marcotte, Jean‐Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5109-c73125033b2f0d3390440b8e6637dae0a7655b6fee44fba9bef15e063744e1f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Aspect ratio</topic><topic>Compacting</topic><topic>Compressive properties</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>die swell</topic><topic>Elastic sheets</topic><topic>energy method</topic><topic>Energy methods</topic><topic>Extrusion dies</topic><topic>Extrusion rate</topic><topic>Finite element method</topic><topic>Flow velocity</topic><topic>instability</topic><topic>level set method</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical prediction</topic><topic>sheet extrusion</topic><topic>Tensors</topic><topic>Thickness ratio</topic><topic>viscoelastic fluid</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabanemi, Kalonji K.</creatorcontrib><creatorcontrib>Marcotte, Jean‐Philippe</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabanemi, Kalonji K.</au><au>Marcotte, Jean‐Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A level set method for simulating wrinkling of extruded viscoelastic sheets</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-07</date><risdate>2020</risdate><volume>60</volume><issue>7</issue><spage>1662</spage><epage>1675</epage><pages>1662-1675</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>When a polymer is extruded freely from a rectangular die of large cross‐sectional aspect ratio, wrinkles are observed. While not present in extruded Newtonian materials, such wrinkles develop in extruded viscoelastic sheets and are understood as an elastic stress‐driven instability. The present study is devoted in developing a transient finite element method, which combines the matrix‐logarithm‐based formulation of the conformation tensor and the single‐phase level set method, for simulating wrinkles that form during sheet extrusion of viscoelastic fluids. Numerical analyses of sheet extrusion were conducted over a wide range of flow rate and width‐to‐thickness ratio of the die exit cross section, χ, to determine critical conditions for the onset of wrinkling of extruded sheets. For large aspect ratios, that is, χ >> 1, wrinkles develop at moderate extrusion flow rate, corresponding to a Weissenberg number of about 29. Calculations based on Rayleigh's energy method show that the critical compressive stress, σc, for the onset of wrinkling of an elastic sheet scales like σc~1/χ2, with a significant drop for χ >> 1. As next to the die exit lip, compressive normal stresses are induced in the extruded sheet, wrinkling will take place for large χ (σc being small), in accordance with numerical predictions.
Predicted parison shape during free extrusion from a rectangular die with a large width‐to‐thickness ratio of the die exit cross section L/h = 125 (thickness h = 8 mm and width L = 1000 mm) at flow rate Q = 450 kg/h: A, Newtonian fluid, B, viscoelastic PTT fluid showing sinusoidal wrinkles (HDPE Lupolen data in Table 1).</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pen.25409</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3995-391X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2020-07, Vol.60 (7), p.1662-1675 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_2422434854 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analysis Aspect ratio Compacting Compressive properties Computational fluid dynamics Computer simulation die swell Elastic sheets energy method Energy methods Extrusion dies Extrusion rate Finite element method Flow velocity instability level set method Mathematical analysis Methods Numerical analysis Numerical prediction sheet extrusion Tensors Thickness ratio viscoelastic fluid Viscoelastic fluids Viscoelasticity Wrinkling |
title | A level set method for simulating wrinkling of extruded viscoelastic sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20level%20set%20method%20for%20simulating%20wrinkling%20of%20extruded%20viscoelastic%20sheets&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Kabanemi,%20Kalonji%20K.&rft.date=2020-07&rft.volume=60&rft.issue=7&rft.spage=1662&rft.epage=1675&rft.pages=1662-1675&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25409&rft_dat=%3Cgale_proqu%3EA632210541%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422434854&rft_id=info:pmid/&rft_galeid=A632210541&rfr_iscdi=true |