A universal route to pattern formation in multicellular systems

A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2020-07, Vol.93 (7), Article 135
Hauptverfasser: Asllani, Malbor, Carletti, Timoteo, Fanelli, Duccio, Maini, Philip K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The European physical journal. B, Condensed matter physics
container_volume 93
creator Asllani, Malbor
Carletti, Timoteo
Fanelli, Duccio
Maini, Philip K.
description A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior. Graphical abstract
doi_str_mv 10.1140/epjb/e2020-10206-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2422415817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A636079827</galeid><sourcerecordid>A636079827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bfaa2923344d626d1972b5483d40314e999bd3c7c844959544ef3a2072990a233</originalsourceid><addsrcrecordid>eNqNkVtLxDAQhYsouK7-AZ8KPvnQ3dyaNk-yiJeFBcHLc0jb6ZKlbWqSivvvbbei7ovKQGYI3zkDc4LgHKMZxgzNod1kcyCIoAj3D4_oQTDBjLKII8oPv2aSHgcnzm0QQphjNgmuFmHX6DewTlWhNZ2H0JuwVd6DbcLS2Fp5bZpQN2HdVV7nUFVdpWzots5D7U6Do1JVDs4--zR4ub15vr6PVg93y-vFKspjJHyUlUoRQShlrOCEF1gkJItZSguGKGYghMgKmid5ypiIRcwYlFQRlBAhkOp10-Bi9G2tee3AebkxnW36lZIwQhiOU5z01Gyk1qoCqZvSeKvyvgqodW4aKHX_v-Ap4SgRlP1bQAc-JcOGyz1Bz3h492vVOSeXT4_75n-yP3zJyObWOGehlK3VtbJbiZEcIpZDxHIXsdxFLIej0FHkerhZg_0-yi-qD6Yxpzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422415817</pqid></control><display><type>article</type><title>A universal route to pattern formation in multicellular systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Asllani, Malbor ; Carletti, Timoteo ; Fanelli, Duccio ; Maini, Philip K.</creator><creatorcontrib>Asllani, Malbor ; Carletti, Timoteo ; Fanelli, Duccio ; Maini, Philip K.</creatorcontrib><description>A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior. Graphical abstract</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2020-10206-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Fluid- and Aerodynamics ; Partial differential equations ; Physics ; Physics and Astronomy ; Regular Article ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2020-07, Vol.93 (7), Article 135</ispartof><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bfaa2923344d626d1972b5483d40314e999bd3c7c844959544ef3a2072990a233</citedby><cites>FETCH-LOGICAL-c509t-bfaa2923344d626d1972b5483d40314e999bd3c7c844959544ef3a2072990a233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2020-10206-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2020-10206-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Asllani, Malbor</creatorcontrib><creatorcontrib>Carletti, Timoteo</creatorcontrib><creatorcontrib>Fanelli, Duccio</creatorcontrib><creatorcontrib>Maini, Philip K.</creatorcontrib><title>A universal route to pattern formation in multicellular systems</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior. Graphical abstract</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Fluid- and Aerodynamics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkVtLxDAQhYsouK7-AZ8KPvnQ3dyaNk-yiJeFBcHLc0jb6ZKlbWqSivvvbbei7ovKQGYI3zkDc4LgHKMZxgzNod1kcyCIoAj3D4_oQTDBjLKII8oPv2aSHgcnzm0QQphjNgmuFmHX6DewTlWhNZ2H0JuwVd6DbcLS2Fp5bZpQN2HdVV7nUFVdpWzots5D7U6Do1JVDs4--zR4ub15vr6PVg93y-vFKspjJHyUlUoRQShlrOCEF1gkJItZSguGKGYghMgKmid5ypiIRcwYlFQRlBAhkOp10-Bi9G2tee3AebkxnW36lZIwQhiOU5z01Gyk1qoCqZvSeKvyvgqodW4aKHX_v-Ap4SgRlP1bQAc-JcOGyz1Bz3h492vVOSeXT4_75n-yP3zJyObWOGehlK3VtbJbiZEcIpZDxHIXsdxFLIej0FHkerhZg_0-yi-qD6Yxpzw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Asllani, Malbor</creator><creator>Carletti, Timoteo</creator><creator>Fanelli, Duccio</creator><creator>Maini, Philip K.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200701</creationdate><title>A universal route to pattern formation in multicellular systems</title><author>Asllani, Malbor ; Carletti, Timoteo ; Fanelli, Duccio ; Maini, Philip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bfaa2923344d626d1972b5483d40314e999bd3c7c844959544ef3a2072990a233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Fluid- and Aerodynamics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asllani, Malbor</creatorcontrib><creatorcontrib>Carletti, Timoteo</creatorcontrib><creatorcontrib>Fanelli, Duccio</creatorcontrib><creatorcontrib>Maini, Philip K.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asllani, Malbor</au><au>Carletti, Timoteo</au><au>Fanelli, Duccio</au><au>Maini, Philip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal route to pattern formation in multicellular systems</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>93</volume><issue>7</issue><artnum>135</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>A general framework for the generation of long wavelength patterns in multi-cellular (discrete) systems is proposed, which extends beyond conventional reaction-diffusion (continuum) paradigms. The standard partial differential equations of reaction-diffusion framework can be considered as a mean-field like ansatz which corresponds, in the biological setting, to sending to zero the size (or volume) of each individual cell. By relaxing this approximation and, provided a directionality in the flux is allowed for, we demonstrate here that instability leading to spatial pattern formation can always develop if the (discrete) system is large enough, namely, composed of sufficiently many cells, the units of spatial patchiness. The macroscopic patterns that follow the onset of the instability are robust and show oscillatory or steady state behavior. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2020-10206-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2020-07, Vol.93 (7), Article 135
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2422415817
source SpringerLink Journals - AutoHoldings
subjects Complex Systems
Condensed Matter Physics
Fluid- and Aerodynamics
Partial differential equations
Physics
Physics and Astronomy
Regular Article
Solid State Physics
title A universal route to pattern formation in multicellular systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20route%20to%20pattern%20formation%20in%20multicellular%20systems&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Asllani,%20Malbor&rft.date=2020-07-01&rft.volume=93&rft.issue=7&rft.artnum=135&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2020-10206-3&rft_dat=%3Cgale_proqu%3EA636079827%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422415817&rft_id=info:pmid/&rft_galeid=A636079827&rfr_iscdi=true