Automatic detection of prohibited items with small size in X-ray images
In this paper, we focus on the detection of prohibited items with small size, and establish an automatic detection model based on feature fusion single shot multibox detector (FSSD) architecture. Two modifications are carried out to improve the detection accuracy. Firstly, the semantic enrichment mo...
Gespeichert in:
Veröffentlicht in: | Optoelectronics letters 2020-07, Vol.16 (4), p.313-317 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 317 |
---|---|
container_issue | 4 |
container_start_page | 313 |
container_title | Optoelectronics letters |
container_volume | 16 |
creator | Zhang, Yu-tao Zhang, Hai-gang Zhao, Teng-fei Yang, Jin-feng |
description | In this paper, we focus on the detection of prohibited items with small size, and establish an automatic detection model based on feature fusion single shot multibox detector (FSSD) architecture. Two modifications are carried out to improve the detection accuracy. Firstly, the semantic enrichment module (SEM) with dilated convolution is applied to extract the low level feature with strong semantic information. Secondly, a residual module (Res) with residual blocks is added in the multibox detection architecture in order to extract more adequate features for target detection. The simulation results have demonstrated a better performance of the proposed detection model for prohibited items with small size compared with the state-of-the-arts. |
doi_str_mv | 10.1007/s11801-020-9118-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2422415715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422415715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-460d3742f662cbf006e8612b1b16cd30acc33454389abf52bc9b3c7cb6d9b2de3</originalsourceid><addsrcrecordid>eNp1UMFKAzEUDKJgqf0AbwHP0bxkN7s5lqJVKHhR8BaSbLZN6e7WJMXWrzdlBU--w3tzmJk3DEK3QO-B0uohAtQUCGWUyAzJ8QJNQEpOSgr8MmNRcQKSltdoFuOW5uGsqgs5Qcv5IQ2dTt7ixiVnkx96PLR4H4aNNz65BufVRfzl0wbHTu92OPpvh32PP0jQJ-w7vXbxBl21ehfd7PdO0fvT49vimaxely-L-YpYDiKRQtCGVwVrhWDWtJQKVwtgBgwI23CqreW8KAteS23akhkrDbeVNaKRhjWOT9Hd6JsDfh5cTGo7HEKfXypWMFZAWUGZWTCybBhiDK5V-5BzhpMCqs6VqbEylStT58rUMWvYqImZ269d-HP-X_QDcsxuWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422415715</pqid></control><display><type>article</type><title>Automatic detection of prohibited items with small size in X-ray images</title><source>SpringerLink Journals (MCLS)</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yu-tao ; Zhang, Hai-gang ; Zhao, Teng-fei ; Yang, Jin-feng</creator><creatorcontrib>Zhang, Yu-tao ; Zhang, Hai-gang ; Zhao, Teng-fei ; Yang, Jin-feng</creatorcontrib><description>In this paper, we focus on the detection of prohibited items with small size, and establish an automatic detection model based on feature fusion single shot multibox detector (FSSD) architecture. Two modifications are carried out to improve the detection accuracy. Firstly, the semantic enrichment module (SEM) with dilated convolution is applied to extract the low level feature with strong semantic information. Secondly, a residual module (Res) with residual blocks is added in the multibox detection architecture in order to extract more adequate features for target detection. The simulation results have demonstrated a better performance of the proposed detection model for prohibited items with small size compared with the state-of-the-arts.</description><identifier>ISSN: 1673-1905</identifier><identifier>EISSN: 1993-5013</identifier><identifier>DOI: 10.1007/s11801-020-9118-x</identifier><language>eng</language><publisher>Tianjin: Tianjin University of Technology</publisher><subject>Architecture ; Computer simulation ; Convolution ; Feature extraction ; Image detection ; Lasers ; Low level ; Modules ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Semantics ; Target detection</subject><ispartof>Optoelectronics letters, 2020-07, Vol.16 (4), p.313-317</ispartof><rights>Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-460d3742f662cbf006e8612b1b16cd30acc33454389abf52bc9b3c7cb6d9b2de3</citedby><cites>FETCH-LOGICAL-c316t-460d3742f662cbf006e8612b1b16cd30acc33454389abf52bc9b3c7cb6d9b2de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11801-020-9118-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11801-020-9118-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Yu-tao</creatorcontrib><creatorcontrib>Zhang, Hai-gang</creatorcontrib><creatorcontrib>Zhao, Teng-fei</creatorcontrib><creatorcontrib>Yang, Jin-feng</creatorcontrib><title>Automatic detection of prohibited items with small size in X-ray images</title><title>Optoelectronics letters</title><addtitle>Optoelectron. Lett</addtitle><description>In this paper, we focus on the detection of prohibited items with small size, and establish an automatic detection model based on feature fusion single shot multibox detector (FSSD) architecture. Two modifications are carried out to improve the detection accuracy. Firstly, the semantic enrichment module (SEM) with dilated convolution is applied to extract the low level feature with strong semantic information. Secondly, a residual module (Res) with residual blocks is added in the multibox detection architecture in order to extract more adequate features for target detection. The simulation results have demonstrated a better performance of the proposed detection model for prohibited items with small size compared with the state-of-the-arts.</description><subject>Architecture</subject><subject>Computer simulation</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Image detection</subject><subject>Lasers</subject><subject>Low level</subject><subject>Modules</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semantics</subject><subject>Target detection</subject><issn>1673-1905</issn><issn>1993-5013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKAzEUDKJgqf0AbwHP0bxkN7s5lqJVKHhR8BaSbLZN6e7WJMXWrzdlBU--w3tzmJk3DEK3QO-B0uohAtQUCGWUyAzJ8QJNQEpOSgr8MmNRcQKSltdoFuOW5uGsqgs5Qcv5IQ2dTt7ixiVnkx96PLR4H4aNNz65BufVRfzl0wbHTu92OPpvh32PP0jQJ-w7vXbxBl21ehfd7PdO0fvT49vimaxely-L-YpYDiKRQtCGVwVrhWDWtJQKVwtgBgwI23CqreW8KAteS23akhkrDbeVNaKRhjWOT9Hd6JsDfh5cTGo7HEKfXypWMFZAWUGZWTCybBhiDK5V-5BzhpMCqs6VqbEylStT58rUMWvYqImZ269d-HP-X_QDcsxuWA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Yu-tao</creator><creator>Zhang, Hai-gang</creator><creator>Zhao, Teng-fei</creator><creator>Yang, Jin-feng</creator><general>Tianjin University of Technology</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>Automatic detection of prohibited items with small size in X-ray images</title><author>Zhang, Yu-tao ; Zhang, Hai-gang ; Zhao, Teng-fei ; Yang, Jin-feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-460d3742f662cbf006e8612b1b16cd30acc33454389abf52bc9b3c7cb6d9b2de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Architecture</topic><topic>Computer simulation</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Image detection</topic><topic>Lasers</topic><topic>Low level</topic><topic>Modules</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semantics</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu-tao</creatorcontrib><creatorcontrib>Zhang, Hai-gang</creatorcontrib><creatorcontrib>Zhao, Teng-fei</creatorcontrib><creatorcontrib>Yang, Jin-feng</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu-tao</au><au>Zhang, Hai-gang</au><au>Zhao, Teng-fei</au><au>Yang, Jin-feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of prohibited items with small size in X-ray images</atitle><jtitle>Optoelectronics letters</jtitle><stitle>Optoelectron. Lett</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>16</volume><issue>4</issue><spage>313</spage><epage>317</epage><pages>313-317</pages><issn>1673-1905</issn><eissn>1993-5013</eissn><abstract>In this paper, we focus on the detection of prohibited items with small size, and establish an automatic detection model based on feature fusion single shot multibox detector (FSSD) architecture. Two modifications are carried out to improve the detection accuracy. Firstly, the semantic enrichment module (SEM) with dilated convolution is applied to extract the low level feature with strong semantic information. Secondly, a residual module (Res) with residual blocks is added in the multibox detection architecture in order to extract more adequate features for target detection. The simulation results have demonstrated a better performance of the proposed detection model for prohibited items with small size compared with the state-of-the-arts.</abstract><cop>Tianjin</cop><pub>Tianjin University of Technology</pub><doi>10.1007/s11801-020-9118-x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1673-1905 |
ispartof | Optoelectronics letters, 2020-07, Vol.16 (4), p.313-317 |
issn | 1673-1905 1993-5013 |
language | eng |
recordid | cdi_proquest_journals_2422415715 |
source | SpringerLink Journals (MCLS); Alma/SFX Local Collection |
subjects | Architecture Computer simulation Convolution Feature extraction Image detection Lasers Low level Modules Optical Devices Optics Photonics Physics Physics and Astronomy Semantics Target detection |
title | Automatic detection of prohibited items with small size in X-ray images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20prohibited%20items%20with%20small%20size%20in%20X-ray%20images&rft.jtitle=Optoelectronics%20letters&rft.au=Zhang,%20Yu-tao&rft.date=2020-07-01&rft.volume=16&rft.issue=4&rft.spage=313&rft.epage=317&rft.pages=313-317&rft.issn=1673-1905&rft.eissn=1993-5013&rft_id=info:doi/10.1007/s11801-020-9118-x&rft_dat=%3Cproquest_cross%3E2422415715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422415715&rft_id=info:pmid/&rfr_iscdi=true |