VOAs and Rank-Two Instanton SCFTs

We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-08, Vol.377 (3), p.2553-2578
Hauptverfasser: Beem, Christopher, Meneghelli, Carlo, Peelaers, Wolfger, Rastelli, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2578
container_issue 3
container_start_page 2553
container_title Communications in mathematical physics
container_volume 377
creator Beem, Christopher
Meneghelli, Carlo
Peelaers, Wolfger
Rastelli, Leonardo
description We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number. We comment briefly on expectations for the still higher-rank cases.
doi_str_mv 10.1007/s00220-020-03746-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2422078770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422078770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7119503280a71b4bf6f84d526b44c7eaf3653789f5b95179c2ee26c6ff1dfb893</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AU8Vz9GXP31pjktx14WFBa1eQ9om4qrpmnQRv70tFbx5GOYyM4_3I-SSwQ0DULcJgHOgMEooiVQfkRmTglPQDI_JDIABFcjwlJyltAMAzRFn5Op5u0iZDW32YMMbrb66bB1Sb0PfheyxXFbpnJx4-57cxa_PydPyrirv6Wa7WpeLDW0k5j1VjOkcBC_AKlbL2qMvZJtzrKVslLNeYC5UoX1e65wp3XDnODboPWt9XWgxJ9fT7j52nweXerPrDjEMJw2Xw3OqUAqGFJ9STexSis6bfXz9sPHbMDAjCjOhMDBqRGHGaTGV0hAOLy7-Tf_T-gEWXF2v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422078770</pqid></control><display><type>article</type><title>VOAs and Rank-Two Instanton SCFTs</title><source>SpringerLink Journals</source><creator>Beem, Christopher ; Meneghelli, Carlo ; Peelaers, Wolfger ; Rastelli, Leonardo</creator><creatorcontrib>Beem, Christopher ; Meneghelli, Carlo ; Peelaers, Wolfger ; Rastelli, Leonardo</creatorcontrib><description>We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number. We comment briefly on expectations for the still higher-rank cases.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-020-03746-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Branes ; Classical and Quantum Gravitation ; Complex Systems ; Differential equations ; Instantons ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Parameterization ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Singularity (mathematics) ; Theoretical</subject><ispartof>Communications in mathematical physics, 2020-08, Vol.377 (3), p.2553-2578</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7119503280a71b4bf6f84d526b44c7eaf3653789f5b95179c2ee26c6ff1dfb893</citedby><cites>FETCH-LOGICAL-c465t-7119503280a71b4bf6f84d526b44c7eaf3653789f5b95179c2ee26c6ff1dfb893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-020-03746-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-020-03746-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Beem, Christopher</creatorcontrib><creatorcontrib>Meneghelli, Carlo</creatorcontrib><creatorcontrib>Peelaers, Wolfger</creatorcontrib><creatorcontrib>Rastelli, Leonardo</creatorcontrib><title>VOAs and Rank-Two Instanton SCFTs</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number. We comment briefly on expectations for the still higher-rank cases.</description><subject>Algebra</subject><subject>Branes</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Differential equations</subject><subject>Instantons</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Parameterization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Singularity (mathematics)</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAUxIMouK5-AU8Vz9GXP31pjktx14WFBa1eQ9om4qrpmnQRv70tFbx5GOYyM4_3I-SSwQ0DULcJgHOgMEooiVQfkRmTglPQDI_JDIABFcjwlJyltAMAzRFn5Op5u0iZDW32YMMbrb66bB1Sb0PfheyxXFbpnJx4-57cxa_PydPyrirv6Wa7WpeLDW0k5j1VjOkcBC_AKlbL2qMvZJtzrKVslLNeYC5UoX1e65wp3XDnODboPWt9XWgxJ9fT7j52nweXerPrDjEMJw2Xw3OqUAqGFJ9STexSis6bfXz9sPHbMDAjCjOhMDBqRGHGaTGV0hAOLy7-Tf_T-gEWXF2v</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Beem, Christopher</creator><creator>Meneghelli, Carlo</creator><creator>Peelaers, Wolfger</creator><creator>Rastelli, Leonardo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200801</creationdate><title>VOAs and Rank-Two Instanton SCFTs</title><author>Beem, Christopher ; Meneghelli, Carlo ; Peelaers, Wolfger ; Rastelli, Leonardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7119503280a71b4bf6f84d526b44c7eaf3653789f5b95179c2ee26c6ff1dfb893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Branes</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Differential equations</topic><topic>Instantons</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Parameterization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Singularity (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beem, Christopher</creatorcontrib><creatorcontrib>Meneghelli, Carlo</creatorcontrib><creatorcontrib>Peelaers, Wolfger</creatorcontrib><creatorcontrib>Rastelli, Leonardo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beem, Christopher</au><au>Meneghelli, Carlo</au><au>Peelaers, Wolfger</au><au>Rastelli, Leonardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VOAs and Rank-Two Instanton SCFTs</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>377</volume><issue>3</issue><spage>2553</spage><epage>2578</epage><pages>2553-2578</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number. We comment briefly on expectations for the still higher-rank cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-020-03746-9</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2020-08, Vol.377 (3), p.2553-2578
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2422078770
source SpringerLink Journals
subjects Algebra
Branes
Classical and Quantum Gravitation
Complex Systems
Differential equations
Instantons
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Parameterization
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Singularity (mathematics)
Theoretical
title VOAs and Rank-Two Instanton SCFTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VOAs%20and%20Rank-Two%20Instanton%20SCFTs&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Beem,%20Christopher&rft.date=2020-08-01&rft.volume=377&rft.issue=3&rft.spage=2553&rft.epage=2578&rft.pages=2553-2578&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-020-03746-9&rft_dat=%3Cproquest_cross%3E2422078770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422078770&rft_id=info:pmid/&rfr_iscdi=true