Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter

Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2020-07, Vol.44 (6), p.971-990
Hauptverfasser: Wu, Bohan, Akinola, Iretiayo, Gupta, Abhi, Xu, Feng, Varley, Jacob, Watkins-Valls, David, Allen, Peter K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 6
container_start_page 971
container_title Autonomous robots
container_volume 44
creator Wu, Bohan
Akinola, Iretiayo
Gupta, Abhi
Xu, Feng
Varley, Jacob
Watkins-Valls, David
Allen, Peter K.
description Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92 % real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.
doi_str_mv 10.1007/s10514-020-09907-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2422017533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422017533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGdoJrdlUFBakSG1hbTjJuU5of7ATUXQ8Cl-tJcFskdqxmRnrfG71HyCWHaw6gbgKHlCcMBDDQGhRbH5EBT5VkKhXqmAxAC83SVMtTchbCEgC0AhiQdoo1etuVH0jHXYd1VzY1naH1dVnP76il283XXjOebTff1Hlb4Wfj36hrPF2U8wVr0ce9snWOtOpXXclcRNFjQefehjYetKxpvuqjvz8nJ86uAl78ziF5fbh_mTyy2fP0aTKesVxy3TEhOCqeScySgqdZTOckZBaAOyFvEyEykSIkiMBH2hYu4boAVMIl1qp8lMghuTr4tr557zF0Ztn0vo4vjYg4cJVKGVXioMp9E4JHZ1pfVtavDQeza9YcmjWxWbNv1qwjJA9QiOJd0j_rf6gfN6h_IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422017533</pqid></control><display><type>article</type><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><source>SpringerNature Journals</source><creator>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</creator><creatorcontrib>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</creatorcontrib><description>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92 % real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-020-09907-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cartesian coordinates ; Clutter ; Computer Imaging ; Control ; Degrees of freedom ; End effectors ; Engineering ; Finger jointing ; Grasping (robotics) ; Hand (anatomy) ; Learning ; Mapping ; Mechatronics ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2020-07, Vol.44 (6), p.971-990</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</citedby><cites>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</cites><orcidid>0000-0003-0588-459X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-020-09907-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-020-09907-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Bohan</creatorcontrib><creatorcontrib>Akinola, Iretiayo</creatorcontrib><creatorcontrib>Gupta, Abhi</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Varley, Jacob</creatorcontrib><creatorcontrib>Watkins-Valls, David</creatorcontrib><creatorcontrib>Allen, Peter K.</creatorcontrib><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92 % real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</description><subject>Artificial Intelligence</subject><subject>Cartesian coordinates</subject><subject>Clutter</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Degrees of freedom</subject><subject>End effectors</subject><subject>Engineering</subject><subject>Finger jointing</subject><subject>Grasping (robotics)</subject><subject>Hand (anatomy)</subject><subject>Learning</subject><subject>Mapping</subject><subject>Mechatronics</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGdoJrdlUFBakSG1hbTjJuU5of7ATUXQ8Cl-tJcFskdqxmRnrfG71HyCWHaw6gbgKHlCcMBDDQGhRbH5EBT5VkKhXqmAxAC83SVMtTchbCEgC0AhiQdoo1etuVH0jHXYd1VzY1naH1dVnP76il283XXjOebTff1Hlb4Wfj36hrPF2U8wVr0ce9snWOtOpXXclcRNFjQefehjYetKxpvuqjvz8nJ86uAl78ziF5fbh_mTyy2fP0aTKesVxy3TEhOCqeScySgqdZTOckZBaAOyFvEyEykSIkiMBH2hYu4boAVMIl1qp8lMghuTr4tr557zF0Ztn0vo4vjYg4cJVKGVXioMp9E4JHZ1pfVtavDQeza9YcmjWxWbNv1qwjJA9QiOJd0j_rf6gfN6h_IA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Wu, Bohan</creator><creator>Akinola, Iretiayo</creator><creator>Gupta, Abhi</creator><creator>Xu, Feng</creator><creator>Varley, Jacob</creator><creator>Watkins-Valls, David</creator><creator>Allen, Peter K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0588-459X</orcidid></search><sort><creationdate>20200701</creationdate><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><author>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Cartesian coordinates</topic><topic>Clutter</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Degrees of freedom</topic><topic>End effectors</topic><topic>Engineering</topic><topic>Finger jointing</topic><topic>Grasping (robotics)</topic><topic>Hand (anatomy)</topic><topic>Learning</topic><topic>Mapping</topic><topic>Mechatronics</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bohan</creatorcontrib><creatorcontrib>Akinola, Iretiayo</creatorcontrib><creatorcontrib>Gupta, Abhi</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Varley, Jacob</creatorcontrib><creatorcontrib>Watkins-Valls, David</creatorcontrib><creatorcontrib>Allen, Peter K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Bohan</au><au>Akinola, Iretiayo</au><au>Gupta, Abhi</au><au>Xu, Feng</au><au>Varley, Jacob</au><au>Watkins-Valls, David</au><au>Allen, Peter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>44</volume><issue>6</issue><spage>971</spage><epage>990</epage><pages>971-990</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over 92 % real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-020-09907-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0588-459X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2020-07, Vol.44 (6), p.971-990
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_journals_2422017533
source SpringerNature Journals
subjects Artificial Intelligence
Cartesian coordinates
Clutter
Computer Imaging
Control
Degrees of freedom
End effectors
Engineering
Finger jointing
Grasping (robotics)
Hand (anatomy)
Learning
Mapping
Mechatronics
Pattern Recognition and Graphics
Robotics
Robotics and Automation
Robots
Vision
title Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Attention%20Learning:%20a%20%E2%80%9CGenerAL%E2%80%9D%20framework%20for%20high-performance%20multi-fingered%20grasping%20in%20clutter&rft.jtitle=Autonomous%20robots&rft.au=Wu,%20Bohan&rft.date=2020-07-01&rft.volume=44&rft.issue=6&rft.spage=971&rft.epage=990&rft.pages=971-990&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-020-09907-y&rft_dat=%3Cproquest_cross%3E2422017533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422017533&rft_id=info:pmid/&rfr_iscdi=true