Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter
Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism tha...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2020-07, Vol.44 (6), p.971-990 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 6 |
container_start_page | 971 |
container_title | Autonomous robots |
container_volume | 44 |
creator | Wu, Bohan Akinola, Iretiayo Gupta, Abhi Xu, Feng Varley, Jacob Watkins-Valls, David Allen, Peter K. |
description | Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over
92
%
real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom. |
doi_str_mv | 10.1007/s10514-020-09907-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2422017533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422017533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGdoJrdlUFBakSG1hbTjJuU5of7ATUXQ8Cl-tJcFskdqxmRnrfG71HyCWHaw6gbgKHlCcMBDDQGhRbH5EBT5VkKhXqmAxAC83SVMtTchbCEgC0AhiQdoo1etuVH0jHXYd1VzY1naH1dVnP76il283XXjOebTff1Hlb4Wfj36hrPF2U8wVr0ce9snWOtOpXXclcRNFjQefehjYetKxpvuqjvz8nJ86uAl78ziF5fbh_mTyy2fP0aTKesVxy3TEhOCqeScySgqdZTOckZBaAOyFvEyEykSIkiMBH2hYu4boAVMIl1qp8lMghuTr4tr557zF0Ztn0vo4vjYg4cJVKGVXioMp9E4JHZ1pfVtavDQeza9YcmjWxWbNv1qwjJA9QiOJd0j_rf6gfN6h_IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422017533</pqid></control><display><type>article</type><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><source>SpringerNature Journals</source><creator>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</creator><creatorcontrib>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</creatorcontrib><description>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over
92
%
real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-020-09907-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cartesian coordinates ; Clutter ; Computer Imaging ; Control ; Degrees of freedom ; End effectors ; Engineering ; Finger jointing ; Grasping (robotics) ; Hand (anatomy) ; Learning ; Mapping ; Mechatronics ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2020-07, Vol.44 (6), p.971-990</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</citedby><cites>FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</cites><orcidid>0000-0003-0588-459X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-020-09907-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-020-09907-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, Bohan</creatorcontrib><creatorcontrib>Akinola, Iretiayo</creatorcontrib><creatorcontrib>Gupta, Abhi</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Varley, Jacob</creatorcontrib><creatorcontrib>Watkins-Valls, David</creatorcontrib><creatorcontrib>Allen, Peter K.</creatorcontrib><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over
92
%
real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</description><subject>Artificial Intelligence</subject><subject>Cartesian coordinates</subject><subject>Clutter</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Degrees of freedom</subject><subject>End effectors</subject><subject>Engineering</subject><subject>Finger jointing</subject><subject>Grasping (robotics)</subject><subject>Hand (anatomy)</subject><subject>Learning</subject><subject>Mapping</subject><subject>Mechatronics</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGdoJrdlUFBakSG1hbTjJuU5of7ATUXQ8Cl-tJcFskdqxmRnrfG71HyCWHaw6gbgKHlCcMBDDQGhRbH5EBT5VkKhXqmAxAC83SVMtTchbCEgC0AhiQdoo1etuVH0jHXYd1VzY1naH1dVnP76il283XXjOebTff1Hlb4Wfj36hrPF2U8wVr0ce9snWOtOpXXclcRNFjQefehjYetKxpvuqjvz8nJ86uAl78ziF5fbh_mTyy2fP0aTKesVxy3TEhOCqeScySgqdZTOckZBaAOyFvEyEykSIkiMBH2hYu4boAVMIl1qp8lMghuTr4tr557zF0Ztn0vo4vjYg4cJVKGVXioMp9E4JHZ1pfVtavDQeza9YcmjWxWbNv1qwjJA9QiOJd0j_rf6gfN6h_IA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Wu, Bohan</creator><creator>Akinola, Iretiayo</creator><creator>Gupta, Abhi</creator><creator>Xu, Feng</creator><creator>Varley, Jacob</creator><creator>Watkins-Valls, David</creator><creator>Allen, Peter K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0588-459X</orcidid></search><sort><creationdate>20200701</creationdate><title>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</title><author>Wu, Bohan ; Akinola, Iretiayo ; Gupta, Abhi ; Xu, Feng ; Varley, Jacob ; Watkins-Valls, David ; Allen, Peter K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-221e71b3eb4d15b051f30ba001f236422b25e04ee0189adf419d0e72f4aa7c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Cartesian coordinates</topic><topic>Clutter</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Degrees of freedom</topic><topic>End effectors</topic><topic>Engineering</topic><topic>Finger jointing</topic><topic>Grasping (robotics)</topic><topic>Hand (anatomy)</topic><topic>Learning</topic><topic>Mapping</topic><topic>Mechatronics</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bohan</creatorcontrib><creatorcontrib>Akinola, Iretiayo</creatorcontrib><creatorcontrib>Gupta, Abhi</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Varley, Jacob</creatorcontrib><creatorcontrib>Watkins-Valls, David</creatorcontrib><creatorcontrib>Allen, Peter K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Bohan</au><au>Akinola, Iretiayo</au><au>Gupta, Abhi</au><au>Xu, Feng</au><au>Varley, Jacob</au><au>Watkins-Valls, David</au><au>Allen, Peter K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>44</volume><issue>6</issue><spage>971</spage><epage>990</epage><pages>971-990</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Generative Attention Learning (GenerAL) is a framework for high-DOF multi-fingered grasping that is not only robust to dense clutter and novel objects but also effective with a variety of different parallel-jaw and multi-fingered robot hands. This framework introduces a novel attention mechanism that substantially improves the grasp success rate in clutter. Its generative nature allows the learning of full-DOF grasps with flexible end-effector positions and orientations, as well as all finger joint angles of the hand. Trained purely in simulation, this framework skillfully closes the sim-to-real gap. To close the visual sim-to-real gap, this framework uses a single depth image as input. To close the dynamics sim-to-real gap, this framework circumvents continuous motor control with a direct mapping from pixel to Cartesian space inferred from the same depth image. Finally, this framework demonstrates inter-robot generality by achieving over
92
%
real-world grasp success rates in cluttered scenes with novel objects using two multi-fingered robotic hand-arm systems with different degrees of freedom.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-020-09907-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0588-459X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2020-07, Vol.44 (6), p.971-990 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_journals_2422017533 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Cartesian coordinates Clutter Computer Imaging Control Degrees of freedom End effectors Engineering Finger jointing Grasping (robotics) Hand (anatomy) Learning Mapping Mechatronics Pattern Recognition and Graphics Robotics Robotics and Automation Robots Vision |
title | Generative Attention Learning: a “GenerAL” framework for high-performance multi-fingered grasping in clutter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20Attention%20Learning:%20a%20%E2%80%9CGenerAL%E2%80%9D%20framework%20for%20high-performance%20multi-fingered%20grasping%20in%20clutter&rft.jtitle=Autonomous%20robots&rft.au=Wu,%20Bohan&rft.date=2020-07-01&rft.volume=44&rft.issue=6&rft.spage=971&rft.epage=990&rft.pages=971-990&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-020-09907-y&rft_dat=%3Cproquest_cross%3E2422017533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422017533&rft_id=info:pmid/&rfr_iscdi=true |