The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism

Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-07, Vol.27 (7), p.645-652
Hauptverfasser: Shimada, Hiroto, Kusakizako, Tsukasa, Dung Nguyen, T. H., Nishizawa, Tomohiro, Hino, Tomoya, Tominaga, Makoto, Nureki, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 7
container_start_page 645
container_title Nature structural & molecular biology
container_volume 27
creator Shimada, Hiroto
Kusakizako, Tsukasa
Dung Nguyen, T. H.
Nishizawa, Tomohiro
Hino, Tomoya
Tominaga, Makoto
Nureki, Osamu
description Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how physiological lipids are involved in the TRPV3 activation. Here we determined the apo state structure of mouse ( Mus musculus ) TRPV3 in a lipid nanodisc at 3.3 Å resolution. The structure revealed that lipids bound to the pore domain stabilize the selectivity filter in the narrow state, suggesting that the selectivity filter of TRPV3 affects cation permeation. When the lower gate is closed in nanodisc-reconstituted TRPV3, the S6 helix adopts the π-helical conformation without agonist- or heat-sensitization, potentially stabilized by putative intra-subunit hydrogen bonds and lipid binding. Our findings provide insights into the lipid-associated gating mechanism of TRPV3. A cryo-EM structure of mouse TRPV3 in nanodiscs reveal lipids bound to the pore domain, stabilizing the selectivity filter in the narrow state and the S6 in a π-helical conformation.
doi_str_mv 10.1038/s41594-020-0439-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421631894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421631894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5c96c5a59079d85100e97a73dfdce179a13f09e608a4358100d54195af2a9ec3</originalsourceid><addsrcrecordid>eNp1kFtLwzAUx4Mobk4_gC9S8Dma69o8yvAGA4cUX0NMTreOtZ1JKrhPb0Z1Pvl0Dvxv8EPokpIbSnhxGwSVSmDCCCaCK7w7QmMqhcRKFfL48Cs-QmchrAlhUub8FI04kzljUozRolxBFqLvbew9ZF2Vbept7bLWtJ2rg8UebNeGWMc-gsvK18Ubzzx8gtmELKbs0sS6XWYN2JVp69Cco5MqaXDxcyeofLgvZ094_vL4PLubYyt4EbG0amqlkYrkyhWSEgIqNzl3lbNAc2Uor4iCKSmM4LJIupOCKmkqZhRYPkHXQ-3Wdx89hKjXXe_btKiZYHTKaaFEctHBZX0XgodKb33dGP-lKdF7hHpAqBNCvUeodylz9dPcvzfgDolfZsnABkNIUrsE_zf9f-s35c58Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421631894</pqid></control><display><type>article</type><title>The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Shimada, Hiroto ; Kusakizako, Tsukasa ; Dung Nguyen, T. H. ; Nishizawa, Tomohiro ; Hino, Tomoya ; Tominaga, Makoto ; Nureki, Osamu</creator><creatorcontrib>Shimada, Hiroto ; Kusakizako, Tsukasa ; Dung Nguyen, T. H. ; Nishizawa, Tomohiro ; Hino, Tomoya ; Tominaga, Makoto ; Nureki, Osamu</creatorcontrib><description>Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how physiological lipids are involved in the TRPV3 activation. Here we determined the apo state structure of mouse ( Mus musculus ) TRPV3 in a lipid nanodisc at 3.3 Å resolution. The structure revealed that lipids bound to the pore domain stabilize the selectivity filter in the narrow state, suggesting that the selectivity filter of TRPV3 affects cation permeation. When the lower gate is closed in nanodisc-reconstituted TRPV3, the S6 helix adopts the π-helical conformation without agonist- or heat-sensitization, potentially stabilized by putative intra-subunit hydrogen bonds and lipid binding. Our findings provide insights into the lipid-associated gating mechanism of TRPV3. A cryo-EM structure of mouse TRPV3 in nanodiscs reveal lipids bound to the pore domain, stabilizing the selectivity filter in the narrow state and the S6 in a π-helical conformation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-020-0439-z</identifier><identifier>PMID: 32572254</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>101/28 ; 631/535/1258 ; 631/57/2270/1140 ; 9/74 ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Cations ; Channel gating ; Conformation ; Cryoelectron Microscopy ; Domains ; Hydrogen Bonding ; Hydrogen bonds ; Ion Channel Gating - physiology ; Ion channels ; Ions ; Life Sciences ; Lipids ; Lipids - chemistry ; Membrane Biology ; Micelles ; Models, Molecular ; Nanostructures - chemistry ; Protein Conformation ; Protein Structure ; Selectivity ; Transient receptor potential proteins ; TRPV Cation Channels - chemistry ; TRPV Cation Channels - metabolism</subject><ispartof>Nature structural &amp; molecular biology, 2020-07, Vol.27 (7), p.645-652</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5c96c5a59079d85100e97a73dfdce179a13f09e608a4358100d54195af2a9ec3</citedby><cites>FETCH-LOGICAL-c438t-5c96c5a59079d85100e97a73dfdce179a13f09e608a4358100d54195af2a9ec3</cites><orcidid>0000-0003-1813-7008 ; 0000-0002-8813-4622 ; 0000-0002-6186-6647 ; 0000-0001-7463-8398 ; 0000-0003-3111-3772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-020-0439-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-020-0439-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32572254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimada, Hiroto</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Dung Nguyen, T. H.</creatorcontrib><creatorcontrib>Nishizawa, Tomohiro</creatorcontrib><creatorcontrib>Hino, Tomoya</creatorcontrib><creatorcontrib>Tominaga, Makoto</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how physiological lipids are involved in the TRPV3 activation. Here we determined the apo state structure of mouse ( Mus musculus ) TRPV3 in a lipid nanodisc at 3.3 Å resolution. The structure revealed that lipids bound to the pore domain stabilize the selectivity filter in the narrow state, suggesting that the selectivity filter of TRPV3 affects cation permeation. When the lower gate is closed in nanodisc-reconstituted TRPV3, the S6 helix adopts the π-helical conformation without agonist- or heat-sensitization, potentially stabilized by putative intra-subunit hydrogen bonds and lipid binding. Our findings provide insights into the lipid-associated gating mechanism of TRPV3. A cryo-EM structure of mouse TRPV3 in nanodiscs reveal lipids bound to the pore domain, stabilizing the selectivity filter in the narrow state and the S6 in a π-helical conformation.</description><subject>101/28</subject><subject>631/535/1258</subject><subject>631/57/2270/1140</subject><subject>9/74</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cations</subject><subject>Channel gating</subject><subject>Conformation</subject><subject>Cryoelectron Microscopy</subject><subject>Domains</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Membrane Biology</subject><subject>Micelles</subject><subject>Models, Molecular</subject><subject>Nanostructures - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>Selectivity</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - chemistry</subject><subject>TRPV Cation Channels - metabolism</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFtLwzAUx4Mobk4_gC9S8Dma69o8yvAGA4cUX0NMTreOtZ1JKrhPb0Z1Pvl0Dvxv8EPokpIbSnhxGwSVSmDCCCaCK7w7QmMqhcRKFfL48Cs-QmchrAlhUub8FI04kzljUozRolxBFqLvbew9ZF2Vbept7bLWtJ2rg8UebNeGWMc-gsvK18Ubzzx8gtmELKbs0sS6XWYN2JVp69Cco5MqaXDxcyeofLgvZ094_vL4PLubYyt4EbG0amqlkYrkyhWSEgIqNzl3lbNAc2Uor4iCKSmM4LJIupOCKmkqZhRYPkHXQ-3Wdx89hKjXXe_btKiZYHTKaaFEctHBZX0XgodKb33dGP-lKdF7hHpAqBNCvUeodylz9dPcvzfgDolfZsnABkNIUrsE_zf9f-s35c58Hg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Shimada, Hiroto</creator><creator>Kusakizako, Tsukasa</creator><creator>Dung Nguyen, T. H.</creator><creator>Nishizawa, Tomohiro</creator><creator>Hino, Tomoya</creator><creator>Tominaga, Makoto</creator><creator>Nureki, Osamu</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><orcidid>https://orcid.org/0000-0002-8813-4622</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7463-8398</orcidid><orcidid>https://orcid.org/0000-0003-3111-3772</orcidid></search><sort><creationdate>20200701</creationdate><title>The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism</title><author>Shimada, Hiroto ; Kusakizako, Tsukasa ; Dung Nguyen, T. H. ; Nishizawa, Tomohiro ; Hino, Tomoya ; Tominaga, Makoto ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5c96c5a59079d85100e97a73dfdce179a13f09e608a4358100d54195af2a9ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/28</topic><topic>631/535/1258</topic><topic>631/57/2270/1140</topic><topic>9/74</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cations</topic><topic>Channel gating</topic><topic>Conformation</topic><topic>Cryoelectron Microscopy</topic><topic>Domains</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Membrane Biology</topic><topic>Micelles</topic><topic>Models, Molecular</topic><topic>Nanostructures - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>Selectivity</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - chemistry</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimada, Hiroto</creatorcontrib><creatorcontrib>Kusakizako, Tsukasa</creatorcontrib><creatorcontrib>Dung Nguyen, T. H.</creatorcontrib><creatorcontrib>Nishizawa, Tomohiro</creatorcontrib><creatorcontrib>Hino, Tomoya</creatorcontrib><creatorcontrib>Tominaga, Makoto</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimada, Hiroto</au><au>Kusakizako, Tsukasa</au><au>Dung Nguyen, T. H.</au><au>Nishizawa, Tomohiro</au><au>Hino, Tomoya</au><au>Tominaga, Makoto</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>27</volume><issue>7</issue><spage>645</spage><epage>652</epage><pages>645-652</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Transient receptor potential vanilloid subfamily member 3 (TRPV3) is a temperature-sensitive cation channel. Previous cryo-EM analyses of TRPV3 in detergent micelles or amphipol proposed that the lower gate opens by α-to-π helical transitions of the nearby S6 helix. However, it remains unclear how physiological lipids are involved in the TRPV3 activation. Here we determined the apo state structure of mouse ( Mus musculus ) TRPV3 in a lipid nanodisc at 3.3 Å resolution. The structure revealed that lipids bound to the pore domain stabilize the selectivity filter in the narrow state, suggesting that the selectivity filter of TRPV3 affects cation permeation. When the lower gate is closed in nanodisc-reconstituted TRPV3, the S6 helix adopts the π-helical conformation without agonist- or heat-sensitization, potentially stabilized by putative intra-subunit hydrogen bonds and lipid binding. Our findings provide insights into the lipid-associated gating mechanism of TRPV3. A cryo-EM structure of mouse TRPV3 in nanodiscs reveal lipids bound to the pore domain, stabilizing the selectivity filter in the narrow state and the S6 in a π-helical conformation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>32572254</pmid><doi>10.1038/s41594-020-0439-z</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1813-7008</orcidid><orcidid>https://orcid.org/0000-0002-8813-4622</orcidid><orcidid>https://orcid.org/0000-0002-6186-6647</orcidid><orcidid>https://orcid.org/0000-0001-7463-8398</orcidid><orcidid>https://orcid.org/0000-0003-3111-3772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-07, Vol.27 (7), p.645-652
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_journals_2421631894
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 101/28
631/535/1258
631/57/2270/1140
9/74
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Cations
Channel gating
Conformation
Cryoelectron Microscopy
Domains
Hydrogen Bonding
Hydrogen bonds
Ion Channel Gating - physiology
Ion channels
Ions
Life Sciences
Lipids
Lipids - chemistry
Membrane Biology
Micelles
Models, Molecular
Nanostructures - chemistry
Protein Conformation
Protein Structure
Selectivity
Transient receptor potential proteins
TRPV Cation Channels - chemistry
TRPV Cation Channels - metabolism
title The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20lipid%20nanodisc-reconstituted%20TRPV3%20reveals%20the%20gating%20mechanism&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Shimada,%20Hiroto&rft.date=2020-07-01&rft.volume=27&rft.issue=7&rft.spage=645&rft.epage=652&rft.pages=645-652&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-020-0439-z&rft_dat=%3Cproquest_cross%3E2421631894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421631894&rft_id=info:pmid/32572254&rfr_iscdi=true