Test sample allocation method for testability verification test
An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selecti...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2020-07, Vol.36 (5), p.1592-1603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1603 |
---|---|
container_issue | 5 |
container_start_page | 1592 |
container_title | Quality and reliability engineering international |
container_volume | 36 |
creator | Qiu, Wenhao Lian, Guangyao Zhou, Peng Huang, Kaoli |
description | An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result. |
doi_str_mv | 10.1002/qre.2647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421630126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421630126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</originalsourceid><addsrcrecordid>eNp10EFLwzAYBuAgCtYp-BMCXrx0fknapjmJjE2FgSjzHJI2xYx26ZJO6b83dbt6-g7fw_vCi9AtgTkBoA97b-a0yPgZSggIkZKClecoAZ6VaQmEX6KrELYAEYsyQY8bEwYcVNe3Bqu2dZUarNvhzgxfrsaN83iIQmnb2mHE38bbxp7M9LhGF41qg7k53Rn6XC03i5d0_fb8unhapxUDylOtCwGC51QpphkXZU0aYrSgTClSqTznUGqogNLI87qoTQ5ZxirIKDFEazZDd8fc3rv9IRbLrTv4XayUNJqCAaFFVPdHVXkXgjeN7L3tlB8lATnNI-M8cpon0vRIf2xrxn-dfP9Y_vlf11tlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421630126</pqid></control><display><type>article</type><title>Test sample allocation method for testability verification test</title><source>Wiley-Blackwell Journals</source><creator>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</creator><creatorcontrib>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</creatorcontrib><description>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2647</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Failure analysis ; failure mode effect and criticality analysis (FMECA) ; failure mode similarity ; Failure modes ; impact factor support ; Impact factors ; Randomness ; sample allocation ; Similarity ; Testability ; Verification ; verification test</subject><ispartof>Quality and reliability engineering international, 2020-07, Vol.36 (5), p.1592-1603</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</cites><orcidid>0000-0003-1063-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qiu, Wenhao</creatorcontrib><creatorcontrib>Lian, Guangyao</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Huang, Kaoli</creatorcontrib><title>Test sample allocation method for testability verification test</title><title>Quality and reliability engineering international</title><description>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</description><subject>Failure analysis</subject><subject>failure mode effect and criticality analysis (FMECA)</subject><subject>failure mode similarity</subject><subject>Failure modes</subject><subject>impact factor support</subject><subject>Impact factors</subject><subject>Randomness</subject><subject>sample allocation</subject><subject>Similarity</subject><subject>Testability</subject><subject>Verification</subject><subject>verification test</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYBuAgCtYp-BMCXrx0fknapjmJjE2FgSjzHJI2xYx26ZJO6b83dbt6-g7fw_vCi9AtgTkBoA97b-a0yPgZSggIkZKClecoAZ6VaQmEX6KrELYAEYsyQY8bEwYcVNe3Bqu2dZUarNvhzgxfrsaN83iIQmnb2mHE38bbxp7M9LhGF41qg7k53Rn6XC03i5d0_fb8unhapxUDylOtCwGC51QpphkXZU0aYrSgTClSqTznUGqogNLI87qoTQ5ZxirIKDFEazZDd8fc3rv9IRbLrTv4XayUNJqCAaFFVPdHVXkXgjeN7L3tlB8lATnNI-M8cpon0vRIf2xrxn-dfP9Y_vlf11tlaA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Qiu, Wenhao</creator><creator>Lian, Guangyao</creator><creator>Zhou, Peng</creator><creator>Huang, Kaoli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-1063-3699</orcidid></search><sort><creationdate>202007</creationdate><title>Test sample allocation method for testability verification test</title><author>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Failure analysis</topic><topic>failure mode effect and criticality analysis (FMECA)</topic><topic>failure mode similarity</topic><topic>Failure modes</topic><topic>impact factor support</topic><topic>Impact factors</topic><topic>Randomness</topic><topic>sample allocation</topic><topic>Similarity</topic><topic>Testability</topic><topic>Verification</topic><topic>verification test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wenhao</creatorcontrib><creatorcontrib>Lian, Guangyao</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Huang, Kaoli</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wenhao</au><au>Lian, Guangyao</au><au>Zhou, Peng</au><au>Huang, Kaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test sample allocation method for testability verification test</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2020-07</date><risdate>2020</risdate><volume>36</volume><issue>5</issue><spage>1592</spage><epage>1603</epage><pages>1592-1603</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1063-3699</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2020-07, Vol.36 (5), p.1592-1603 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2421630126 |
source | Wiley-Blackwell Journals |
subjects | Failure analysis failure mode effect and criticality analysis (FMECA) failure mode similarity Failure modes impact factor support Impact factors Randomness sample allocation Similarity Testability Verification verification test |
title | Test sample allocation method for testability verification test |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20sample%20allocation%20method%20for%20testability%20verification%20test&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Qiu,%20Wenhao&rft.date=2020-07&rft.volume=36&rft.issue=5&rft.spage=1592&rft.epage=1603&rft.pages=1592-1603&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2647&rft_dat=%3Cproquest_cross%3E2421630126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421630126&rft_id=info:pmid/&rfr_iscdi=true |