Test sample allocation method for testability verification test

An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2020-07, Vol.36 (5), p.1592-1603
Hauptverfasser: Qiu, Wenhao, Lian, Guangyao, Zhou, Peng, Huang, Kaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1603
container_issue 5
container_start_page 1592
container_title Quality and reliability engineering international
container_volume 36
creator Qiu, Wenhao
Lian, Guangyao
Zhou, Peng
Huang, Kaoli
description An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.
doi_str_mv 10.1002/qre.2647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421630126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421630126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</originalsourceid><addsrcrecordid>eNp10EFLwzAYBuAgCtYp-BMCXrx0fknapjmJjE2FgSjzHJI2xYx26ZJO6b83dbt6-g7fw_vCi9AtgTkBoA97b-a0yPgZSggIkZKClecoAZ6VaQmEX6KrELYAEYsyQY8bEwYcVNe3Bqu2dZUarNvhzgxfrsaN83iIQmnb2mHE38bbxp7M9LhGF41qg7k53Rn6XC03i5d0_fb8unhapxUDylOtCwGC51QpphkXZU0aYrSgTClSqTznUGqogNLI87qoTQ5ZxirIKDFEazZDd8fc3rv9IRbLrTv4XayUNJqCAaFFVPdHVXkXgjeN7L3tlB8lATnNI-M8cpon0vRIf2xrxn-dfP9Y_vlf11tlaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421630126</pqid></control><display><type>article</type><title>Test sample allocation method for testability verification test</title><source>Wiley-Blackwell Journals</source><creator>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</creator><creatorcontrib>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</creatorcontrib><description>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2647</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Failure analysis ; failure mode effect and criticality analysis (FMECA) ; failure mode similarity ; Failure modes ; impact factor support ; Impact factors ; Randomness ; sample allocation ; Similarity ; Testability ; Verification ; verification test</subject><ispartof>Quality and reliability engineering international, 2020-07, Vol.36 (5), p.1592-1603</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</cites><orcidid>0000-0003-1063-3699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Qiu, Wenhao</creatorcontrib><creatorcontrib>Lian, Guangyao</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Huang, Kaoli</creatorcontrib><title>Test sample allocation method for testability verification test</title><title>Quality and reliability engineering international</title><description>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</description><subject>Failure analysis</subject><subject>failure mode effect and criticality analysis (FMECA)</subject><subject>failure mode similarity</subject><subject>Failure modes</subject><subject>impact factor support</subject><subject>Impact factors</subject><subject>Randomness</subject><subject>sample allocation</subject><subject>Similarity</subject><subject>Testability</subject><subject>Verification</subject><subject>verification test</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAYBuAgCtYp-BMCXrx0fknapjmJjE2FgSjzHJI2xYx26ZJO6b83dbt6-g7fw_vCi9AtgTkBoA97b-a0yPgZSggIkZKClecoAZ6VaQmEX6KrELYAEYsyQY8bEwYcVNe3Bqu2dZUarNvhzgxfrsaN83iIQmnb2mHE38bbxp7M9LhGF41qg7k53Rn6XC03i5d0_fb8unhapxUDylOtCwGC51QpphkXZU0aYrSgTClSqTznUGqogNLI87qoTQ5ZxirIKDFEazZDd8fc3rv9IRbLrTv4XayUNJqCAaFFVPdHVXkXgjeN7L3tlB8lATnNI-M8cpon0vRIf2xrxn-dfP9Y_vlf11tlaA</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Qiu, Wenhao</creator><creator>Lian, Guangyao</creator><creator>Zhou, Peng</creator><creator>Huang, Kaoli</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0003-1063-3699</orcidid></search><sort><creationdate>202007</creationdate><title>Test sample allocation method for testability verification test</title><author>Qiu, Wenhao ; Lian, Guangyao ; Zhou, Peng ; Huang, Kaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3027-bb6909752aa3b3798d1f1eb923aa1ca55708b0c0223025d6de50443c0421e1bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Failure analysis</topic><topic>failure mode effect and criticality analysis (FMECA)</topic><topic>failure mode similarity</topic><topic>Failure modes</topic><topic>impact factor support</topic><topic>Impact factors</topic><topic>Randomness</topic><topic>sample allocation</topic><topic>Similarity</topic><topic>Testability</topic><topic>Verification</topic><topic>verification test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wenhao</creatorcontrib><creatorcontrib>Lian, Guangyao</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Huang, Kaoli</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wenhao</au><au>Lian, Guangyao</au><au>Zhou, Peng</au><au>Huang, Kaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Test sample allocation method for testability verification test</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2020-07</date><risdate>2020</risdate><volume>36</volume><issue>5</issue><spage>1592</spage><epage>1603</epage><pages>1592-1603</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>An extended failure mode effect and criticality analysis (FMECA)‐based sample allocation method for testability verification is presented in this study to deal with the poor representativeness of test sample sets and the randomness of the testability evaluation results caused by unreasonable selection of failure samples. First, the fault propagation intensity is introduced as part of the extended information of FMECA, and the sample allocation impact factors of component units and failure modes are determined under this framework. Then, the failure mode similarity and impact factor support are defined, and the game decision method for weighing the relationship between similarity and support is proposed to obtain the weight of failure mode impact factor. Finally, a two‐step allocation framework of test samples is formulated to realize the sample allocation of component units and failure modes. This method is applied to the testability verification test of a launch control system. Results show that this method can obtain more representative test samples compared with the traditional sample allocation method while effectively reducing randomness of single testability evaluation result.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1063-3699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2020-07, Vol.36 (5), p.1592-1603
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2421630126
source Wiley-Blackwell Journals
subjects Failure analysis
failure mode effect and criticality analysis (FMECA)
failure mode similarity
Failure modes
impact factor support
Impact factors
Randomness
sample allocation
Similarity
Testability
Verification
verification test
title Test sample allocation method for testability verification test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Test%20sample%20allocation%20method%20for%20testability%20verification%20test&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Qiu,%20Wenhao&rft.date=2020-07&rft.volume=36&rft.issue=5&rft.spage=1592&rft.epage=1603&rft.pages=1592-1603&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2647&rft_dat=%3Cproquest_cross%3E2421630126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421630126&rft_id=info:pmid/&rfr_iscdi=true