Using Causal Inference in Field Development Optimization: Application to Unconventional Plays
In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions are not about prediction or classification; rather, they are causal: if I change A, what will happen to B? Traditional regression...
Gespeichert in:
Veröffentlicht in: | Mathematical geosciences 2020-07, Vol.52 (5), p.619-635 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 635 |
---|---|
container_issue | 5 |
container_start_page | 619 |
container_title | Mathematical geosciences |
container_volume | 52 |
creator | Bertoncello, Antoine Oppenheim, Georges Cordier, Philippe Gourvénec, Sébastien Mathieu, Jean-Philippe Chaput, Eric Kurth, Tobias |
description | In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions are not about prediction or classification; rather, they are causal: if I change A, what will happen to B? Traditional regression techniques such as machine learning optimize predictions based on correlations seen in the data and are not robust tools for epidemiologists and biostatisticians when evaluating the efficacy of new treatments or medications using observational data. Therefore, a set of statistical tools have been developed to go beyond correlations and aim to make inferences about causal relationships between variables. The goal of the present work is to apply one of these statistical tools, propensity score matching, in the oil and gas context, which is a novel application of the method. Two case studies are presented, one on proppant type and the other on lateral length, to determine their respective impacts on productivity. |
doi_str_mv | 10.1007/s11004-019-09847-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421512704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421512704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-32e64319786b5f5c8464c72c85c9f38eaf994666deeebd68aea48e03b78b5ae23</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKf_gKeA52rSpGnqbUyng8E8uKOENPs6Mrq0Jt1g_euNq-jN0_se_N7j4yF0S8k9JSR_CDQKTwgtElJInif9GRpRmfNEFhk7_70FvURXIWwJEZRldIQ-VsG6DZ7qfdA1nrsKPDgD2Do8s1Cv8RMcoG7aHbgOL9vO7myvO9u4Rzxp29qak8Fdg1fONO4Qsehj1Vutj-EaXVS6DnDzo2O0mj2_T1-TxfJlPp0sEs2k6BKWguCMFrkUZVZlRnLBTZ4amZmiYhJ0VRRcCLEGgHItpAbNJRBW5rLMNKRsjO6G3tY3n3sIndo2ex_fCCrlKc1omhMeqXSgjG9C8FCp1tud9kdFifqeUQ0zqjijOs2o-hhiQyhE2G3A_1X_k_oC0JJ3HQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421512704</pqid></control><display><type>article</type><title>Using Causal Inference in Field Development Optimization: Application to Unconventional Plays</title><source>SpringerLink Journals</source><creator>Bertoncello, Antoine ; Oppenheim, Georges ; Cordier, Philippe ; Gourvénec, Sébastien ; Mathieu, Jean-Philippe ; Chaput, Eric ; Kurth, Tobias</creator><creatorcontrib>Bertoncello, Antoine ; Oppenheim, Georges ; Cordier, Philippe ; Gourvénec, Sébastien ; Mathieu, Jean-Philippe ; Chaput, Eric ; Kurth, Tobias</creatorcontrib><description>In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions are not about prediction or classification; rather, they are causal: if I change A, what will happen to B? Traditional regression techniques such as machine learning optimize predictions based on correlations seen in the data and are not robust tools for epidemiologists and biostatisticians when evaluating the efficacy of new treatments or medications using observational data. Therefore, a set of statistical tools have been developed to go beyond correlations and aim to make inferences about causal relationships between variables. The goal of the present work is to apply one of these statistical tools, propensity score matching, in the oil and gas context, which is a novel application of the method. Two case studies are presented, one on proppant type and the other on lateral length, to determine their respective impacts on productivity.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-019-09847-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Causality ; Chemistry and Earth Sciences ; Classification ; Computer Science ; Correlation ; Data science ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Industrial applications ; Learning algorithms ; Machine learning ; Optimization ; Physics ; Predictions ; Statistical analysis ; Statistics ; Statistics for Engineering</subject><ispartof>Mathematical geosciences, 2020-07, Vol.52 (5), p.619-635</ispartof><rights>The Author(s) 2020. corrected publication 2020</rights><rights>The Author(s) 2020. corrected publication 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-32e64319786b5f5c8464c72c85c9f38eaf994666deeebd68aea48e03b78b5ae23</citedby><cites>FETCH-LOGICAL-a386t-32e64319786b5f5c8464c72c85c9f38eaf994666deeebd68aea48e03b78b5ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-019-09847-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-019-09847-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bertoncello, Antoine</creatorcontrib><creatorcontrib>Oppenheim, Georges</creatorcontrib><creatorcontrib>Cordier, Philippe</creatorcontrib><creatorcontrib>Gourvénec, Sébastien</creatorcontrib><creatorcontrib>Mathieu, Jean-Philippe</creatorcontrib><creatorcontrib>Chaput, Eric</creatorcontrib><creatorcontrib>Kurth, Tobias</creatorcontrib><title>Using Causal Inference in Field Development Optimization: Application to Unconventional Plays</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions are not about prediction or classification; rather, they are causal: if I change A, what will happen to B? Traditional regression techniques such as machine learning optimize predictions based on correlations seen in the data and are not robust tools for epidemiologists and biostatisticians when evaluating the efficacy of new treatments or medications using observational data. Therefore, a set of statistical tools have been developed to go beyond correlations and aim to make inferences about causal relationships between variables. The goal of the present work is to apply one of these statistical tools, propensity score matching, in the oil and gas context, which is a novel application of the method. Two case studies are presented, one on proppant type and the other on lateral length, to determine their respective impacts on productivity.</description><subject>Causality</subject><subject>Chemistry and Earth Sciences</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Correlation</subject><subject>Data science</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Industrial applications</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Physics</subject><subject>Predictions</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFLwzAYxYMoOKf_gKeA52rSpGnqbUyng8E8uKOENPs6Mrq0Jt1g_euNq-jN0_se_N7j4yF0S8k9JSR_CDQKTwgtElJInif9GRpRmfNEFhk7_70FvURXIWwJEZRldIQ-VsG6DZ7qfdA1nrsKPDgD2Do8s1Cv8RMcoG7aHbgOL9vO7myvO9u4Rzxp29qak8Fdg1fONO4Qsehj1Vutj-EaXVS6DnDzo2O0mj2_T1-TxfJlPp0sEs2k6BKWguCMFrkUZVZlRnLBTZ4amZmiYhJ0VRRcCLEGgHItpAbNJRBW5rLMNKRsjO6G3tY3n3sIndo2ex_fCCrlKc1omhMeqXSgjG9C8FCp1tud9kdFifqeUQ0zqjijOs2o-hhiQyhE2G3A_1X_k_oC0JJ3HQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Bertoncello, Antoine</creator><creator>Oppenheim, Georges</creator><creator>Cordier, Philippe</creator><creator>Gourvénec, Sébastien</creator><creator>Mathieu, Jean-Philippe</creator><creator>Chaput, Eric</creator><creator>Kurth, Tobias</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200701</creationdate><title>Using Causal Inference in Field Development Optimization: Application to Unconventional Plays</title><author>Bertoncello, Antoine ; Oppenheim, Georges ; Cordier, Philippe ; Gourvénec, Sébastien ; Mathieu, Jean-Philippe ; Chaput, Eric ; Kurth, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-32e64319786b5f5c8464c72c85c9f38eaf994666deeebd68aea48e03b78b5ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Causality</topic><topic>Chemistry and Earth Sciences</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Correlation</topic><topic>Data science</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Industrial applications</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Physics</topic><topic>Predictions</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertoncello, Antoine</creatorcontrib><creatorcontrib>Oppenheim, Georges</creatorcontrib><creatorcontrib>Cordier, Philippe</creatorcontrib><creatorcontrib>Gourvénec, Sébastien</creatorcontrib><creatorcontrib>Mathieu, Jean-Philippe</creatorcontrib><creatorcontrib>Chaput, Eric</creatorcontrib><creatorcontrib>Kurth, Tobias</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertoncello, Antoine</au><au>Oppenheim, Georges</au><au>Cordier, Philippe</au><au>Gourvénec, Sébastien</au><au>Mathieu, Jean-Philippe</au><au>Chaput, Eric</au><au>Kurth, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Causal Inference in Field Development Optimization: Application to Unconventional Plays</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>52</volume><issue>5</issue><spage>619</spage><epage>635</epage><pages>619-635</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>In the current era of big data and machine learning, a strong focus exists on prediction and classification. In industrial applications, however, many important questions are not about prediction or classification; rather, they are causal: if I change A, what will happen to B? Traditional regression techniques such as machine learning optimize predictions based on correlations seen in the data and are not robust tools for epidemiologists and biostatisticians when evaluating the efficacy of new treatments or medications using observational data. Therefore, a set of statistical tools have been developed to go beyond correlations and aim to make inferences about causal relationships between variables. The goal of the present work is to apply one of these statistical tools, propensity score matching, in the oil and gas context, which is a novel application of the method. Two case studies are presented, one on proppant type and the other on lateral length, to determine their respective impacts on productivity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-019-09847-z</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-8961 |
ispartof | Mathematical geosciences, 2020-07, Vol.52 (5), p.619-635 |
issn | 1874-8961 1874-8953 |
language | eng |
recordid | cdi_proquest_journals_2421512704 |
source | SpringerLink Journals |
subjects | Causality Chemistry and Earth Sciences Classification Computer Science Correlation Data science Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences Hydrogeology Industrial applications Learning algorithms Machine learning Optimization Physics Predictions Statistical analysis Statistics Statistics for Engineering |
title | Using Causal Inference in Field Development Optimization: Application to Unconventional Plays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Causal%20Inference%20in%20Field%20Development%20Optimization:%20Application%20to%20Unconventional%20Plays&rft.jtitle=Mathematical%20geosciences&rft.au=Bertoncello,%20Antoine&rft.date=2020-07-01&rft.volume=52&rft.issue=5&rft.spage=619&rft.epage=635&rft.pages=619-635&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-019-09847-z&rft_dat=%3Cproquest_cross%3E2421512704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421512704&rft_id=info:pmid/&rfr_iscdi=true |