Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells
Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-07, Vol.30 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Tian, Jingjing Wang, Jing Xue, Qifan Niu, Tianqi Yan, Lei Zhu, Zonglong Li, Ning Brabec, Christoph J. Yip, Hin‐Lap Cao, Yong |
description | Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2). |
doi_str_mv | 10.1002/adfm.202001764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421353531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421353531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKdXzwHPnfnXNj2OuulgMmEK3kqSJiMzbWpSld38CH5GP4ktk3mU9_C-h-f34-WJoksEJwhCfM0rXU8wxBCiLKVH0QilKI0JxOz4cKPn0-gshO3AZISOorpwdeuC6YxrwKzZmEYpb5oNcBpMrf3-_Fo0zm94YyR4UN69hxfTKTA3tgbaeTDT2kijmg7wpgKrVnk-VHFrd2DdcWEVWDvLPSiUteE8OtHcBnXxu8fR03z2WNzFy9XtopguY0lySmOmJEsYg5oxQRFjJE9plYtcJJJoKAXXmcSS5iwhKcYpSTIhYIUTyrCoEpWScXS17229e31ToSu37s33X4USU4xI0g_qqcmekt6F4JUuW29q7nclguWgtByUlgelfSDfBz6MVbt_6HJ6M7__y_4AN7l72A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421353531</pqid></control><display><type>article</type><title>Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells</title><source>Access via Wiley Online Library</source><creator>Tian, Jingjing ; Wang, Jing ; Xue, Qifan ; Niu, Tianqi ; Yan, Lei ; Zhu, Zonglong ; Li, Ning ; Brabec, Christoph J. ; Yip, Hin‐Lap ; Cao, Yong</creator><creatorcontrib>Tian, Jingjing ; Wang, Jing ; Xue, Qifan ; Niu, Tianqi ; Yan, Lei ; Zhu, Zonglong ; Li, Ning ; Brabec, Christoph J. ; Yip, Hin‐Lap ; Cao, Yong</creatorcontrib><description>Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202001764</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cesium ; Circuits ; Commercialization ; composition engineering ; Crystal structure ; Crystallization ; CsPbI 2.5Br 0.5 ; defect passivation ; Energy conversion efficiency ; Grain boundaries ; Grain size ; Materials science ; Maximum power ; operationally stable ; Optoelectronic devices ; Passivity ; PbI 2 ; Perovskites ; Phase composition ; Photovoltaic cells ; Solar cells ; Thermal stability</subject><ispartof>Advanced functional materials, 2020-07, Vol.30 (28), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63</citedby><cites>FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63</cites><orcidid>0000-0002-5750-9751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202001764$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202001764$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tian, Jingjing</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Niu, Tianqi</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Zhu, Zonglong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells</title><title>Advanced functional materials</title><description>Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2).</description><subject>Cesium</subject><subject>Circuits</subject><subject>Commercialization</subject><subject>composition engineering</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>CsPbI 2.5Br 0.5</subject><subject>defect passivation</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Materials science</subject><subject>Maximum power</subject><subject>operationally stable</subject><subject>Optoelectronic devices</subject><subject>Passivity</subject><subject>PbI 2</subject><subject>Perovskites</subject><subject>Phase composition</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Thermal stability</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE9LwzAYh4soOKdXzwHPnfnXNj2OuulgMmEK3kqSJiMzbWpSld38CH5GP4ktk3mU9_C-h-f34-WJoksEJwhCfM0rXU8wxBCiLKVH0QilKI0JxOz4cKPn0-gshO3AZISOorpwdeuC6YxrwKzZmEYpb5oNcBpMrf3-_Fo0zm94YyR4UN69hxfTKTA3tgbaeTDT2kijmg7wpgKrVnk-VHFrd2DdcWEVWDvLPSiUteE8OtHcBnXxu8fR03z2WNzFy9XtopguY0lySmOmJEsYg5oxQRFjJE9plYtcJJJoKAXXmcSS5iwhKcYpSTIhYIUTyrCoEpWScXS17229e31ToSu37s33X4USU4xI0g_qqcmekt6F4JUuW29q7nclguWgtByUlgelfSDfBz6MVbt_6HJ6M7__y_4AN7l72A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Tian, Jingjing</creator><creator>Wang, Jing</creator><creator>Xue, Qifan</creator><creator>Niu, Tianqi</creator><creator>Yan, Lei</creator><creator>Zhu, Zonglong</creator><creator>Li, Ning</creator><creator>Brabec, Christoph J.</creator><creator>Yip, Hin‐Lap</creator><creator>Cao, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid></search><sort><creationdate>20200701</creationdate><title>Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells</title><author>Tian, Jingjing ; Wang, Jing ; Xue, Qifan ; Niu, Tianqi ; Yan, Lei ; Zhu, Zonglong ; Li, Ning ; Brabec, Christoph J. ; Yip, Hin‐Lap ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3944-8ec85880f88b41883964d9b9b5c3f0cbaf7c2c498536226357bb0d25482bd5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cesium</topic><topic>Circuits</topic><topic>Commercialization</topic><topic>composition engineering</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>CsPbI 2.5Br 0.5</topic><topic>defect passivation</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Materials science</topic><topic>Maximum power</topic><topic>operationally stable</topic><topic>Optoelectronic devices</topic><topic>Passivity</topic><topic>PbI 2</topic><topic>Perovskites</topic><topic>Phase composition</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jingjing</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xue, Qifan</creatorcontrib><creatorcontrib>Niu, Tianqi</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Zhu, Zonglong</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Jingjing</au><au>Wang, Jing</au><au>Xue, Qifan</au><au>Niu, Tianqi</au><au>Yan, Lei</au><au>Zhu, Zonglong</au><au>Li, Ning</au><au>Brabec, Christoph J.</au><au>Yip, Hin‐Lap</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>30</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Cesium‐based inorganic perovskites have recently attracted great research focus due to their excellent optoelectronic properties and thermal stability. However, the operational instability of all‐inorganic perovskites is still a main hindrance for the commercialization. Herein, a facile approach is reported to simultaneously enhance both the efficiency and long‐term stability for all‐inorganic CsPbI2.5Br0.5 perovskite solar cells via inducing excess lead iodide (PbI2) into the precursors. Comprehensive film and device characterizations are conducted to study the influences of excess PbI2 on the crystal quality, passivation effect, charge dynamics, and photovoltaic performance. It is found that excess PbI2 improves the crystallization process, producing high‐quality CsPbI2.5Br0.5 films with enlarged grain sizes, enhanced crystal orientation, and unchanged phase composition. The residual PbI2 at the grain boundaries also provides a passivation effect, which improves the optoelectronic properties and charge collection property in optimized devices, leading to a power conversion efficiency up to 17.1% with a high open‐circuit voltage of 1.25 V. More importantly, a remarkable long‐term operational stability is also achieved for the optimized CsPbI2.5Br0.5 solar cells, with less than 24% degradation drop at the maximum power point under continuous illumination for 420 h.
Operationally stable and high‐efficiency all‐inorganic CsPbI2.5Br0.5 mixed‐halide perovskite solar cells are achieved for the first time, by introducing the different amount of PbI2 in the all‐inorganic perovskite precursor. The 1.02‐PbI2 devices maintain 76% of their initial efficiency (17.1%) after continuous power output at the maximum power point for 420 h under continuous full‐sun, AM 1.5G illumination (100 mW cm−2).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202001764</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-07, Vol.30 (28), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2421353531 |
source | Access via Wiley Online Library |
subjects | Cesium Circuits Commercialization composition engineering Crystal structure Crystallization CsPbI 2.5Br 0.5 defect passivation Energy conversion efficiency Grain boundaries Grain size Materials science Maximum power operationally stable Optoelectronic devices Passivity PbI 2 Perovskites Phase composition Photovoltaic cells Solar cells Thermal stability |
title | Composition Engineering of All‐Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20Engineering%20of%20All%E2%80%90Inorganic%20Perovskite%20Film%20for%20Efficient%20and%20Operationally%20Stable%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Tian,%20Jingjing&rft.date=2020-07-01&rft.volume=30&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202001764&rft_dat=%3Cproquest_cross%3E2421353531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421353531&rft_id=info:pmid/&rfr_iscdi=true |