Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters

AbstractIn the present study, a novel model is introduced for the prediction of a resilient modulus (MR) of cohesive subgrade soils considering cone-penetration test parameters to establish correlations with the MR. A reliable previously published database composed of 124 datasets was utilized for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials in civil engineering 2020-09, Vol.32 (9)
Hauptverfasser: Ghorbani, Behnam, Arulrajah, Arul, Narsilio, Guillermo, Horpibulsuk, Suksun, Bo, Myint Win
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of materials in civil engineering
container_volume 32
creator Ghorbani, Behnam
Arulrajah, Arul
Narsilio, Guillermo
Horpibulsuk, Suksun
Bo, Myint Win
description AbstractIn the present study, a novel model is introduced for the prediction of a resilient modulus (MR) of cohesive subgrade soils considering cone-penetration test parameters to establish correlations with the MR. A reliable previously published database composed of 124 datasets was utilized for the development of the proposed model, which incorporates both cone penetration test (CPT) parameters and laboratory indices. In order to generate the predictive model, a hybrid algorithm combining a firefly algorithm with a multilayer perceptron neural network (FA-MLP) is proposed. The FA algorithm is employed in the MLP network structure to adjust the weights and the bias of the network and, hence, improve the overall performance of the network. The proposed FA-MLP formulation was found to have the capacity to predict, satisfactorily, the MR of cohesive subgrade soils using the results of the CPT test.
doi_str_mv 10.1061/(ASCE)MT.1943-5533.0003329
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421255482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421255482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-4c845874f510fd1faa343a90f5484e938fb5832f991279927c93e51100a353483</originalsourceid><addsrcrecordid>eNp1kF9PwjAUxRujiYh-h0Zf9GHYv2z1jSwgJhCJjOembC2OjBXbzQQ_vV1AffLp3pycc-7ND4BbjAYYDfHj_WiZjh_m2QALRiPOKR0ghCgl4gz0frVz0EOJEBHmQ3wJrrzfdibEUA-o6WHtygJOrNu1lWpKW0Nr4Jv2ZVXquoFzW7RV66GxDqb2PeifGi7b9capIiy2rDxcNcH8VdYbmC4ymGnfwIVyaqcb7fw1uDCq8vrmNPtgNRln6TSavT6_pKNZpCiNm4jlCeNJzAzHyBTYKEUZVQIZzhKmBU3MmieUGCEwiYUgcS6o5hgjpCinLKF9cHfs3Tv70YYf5Na2rg4nJWEEEx6KSHA9HV25s947beTelTvlDhIj2SGVskMq55ns8MkOnzwhDeHhMax8rv_qf5L_B78BHhV5qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421255482</pqid></control><display><type>article</type><title>Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ghorbani, Behnam ; Arulrajah, Arul ; Narsilio, Guillermo ; Horpibulsuk, Suksun ; Bo, Myint Win</creator><creatorcontrib>Ghorbani, Behnam ; Arulrajah, Arul ; Narsilio, Guillermo ; Horpibulsuk, Suksun ; Bo, Myint Win</creatorcontrib><description>AbstractIn the present study, a novel model is introduced for the prediction of a resilient modulus (MR) of cohesive subgrade soils considering cone-penetration test parameters to establish correlations with the MR. A reliable previously published database composed of 124 datasets was utilized for the development of the proposed model, which incorporates both cone penetration test (CPT) parameters and laboratory indices. In order to generate the predictive model, a hybrid algorithm combining a firefly algorithm with a multilayer perceptron neural network (FA-MLP) is proposed. The FA algorithm is employed in the MLP network structure to adjust the weights and the bias of the network and, hence, improve the overall performance of the network. The proposed FA-MLP formulation was found to have the capacity to predict, satisfactorily, the MR of cohesive subgrade soils using the results of the CPT test.</description><identifier>ISSN: 0899-1561</identifier><identifier>EISSN: 1943-5533</identifier><identifier>DOI: 10.1061/(ASCE)MT.1943-5533.0003329</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Algorithms ; Building materials ; Civil engineering ; Cohesion ; Cone penetration tests ; Heuristic methods ; Mathematical models ; Multilayer perceptrons ; Neural networks ; Parameters ; Penetration ; Prediction models ; Soils ; Technical Note ; Technical Notes</subject><ispartof>Journal of materials in civil engineering, 2020-09, Vol.32 (9)</ispartof><rights>2020 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-4c845874f510fd1faa343a90f5484e938fb5832f991279927c93e51100a353483</citedby><cites>FETCH-LOGICAL-a337t-4c845874f510fd1faa343a90f5484e938fb5832f991279927c93e51100a353483</cites><orcidid>0000-0002-8651-4402 ; 0000-0003-1512-9803 ; 0000-0003-1965-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)MT.1943-5533.0003329$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0003329$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,75954,75962</link.rule.ids></links><search><creatorcontrib>Ghorbani, Behnam</creatorcontrib><creatorcontrib>Arulrajah, Arul</creatorcontrib><creatorcontrib>Narsilio, Guillermo</creatorcontrib><creatorcontrib>Horpibulsuk, Suksun</creatorcontrib><creatorcontrib>Bo, Myint Win</creatorcontrib><title>Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters</title><title>Journal of materials in civil engineering</title><description>AbstractIn the present study, a novel model is introduced for the prediction of a resilient modulus (MR) of cohesive subgrade soils considering cone-penetration test parameters to establish correlations with the MR. A reliable previously published database composed of 124 datasets was utilized for the development of the proposed model, which incorporates both cone penetration test (CPT) parameters and laboratory indices. In order to generate the predictive model, a hybrid algorithm combining a firefly algorithm with a multilayer perceptron neural network (FA-MLP) is proposed. The FA algorithm is employed in the MLP network structure to adjust the weights and the bias of the network and, hence, improve the overall performance of the network. The proposed FA-MLP formulation was found to have the capacity to predict, satisfactorily, the MR of cohesive subgrade soils using the results of the CPT test.</description><subject>Algorithms</subject><subject>Building materials</subject><subject>Civil engineering</subject><subject>Cohesion</subject><subject>Cone penetration tests</subject><subject>Heuristic methods</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Penetration</subject><subject>Prediction models</subject><subject>Soils</subject><subject>Technical Note</subject><subject>Technical Notes</subject><issn>0899-1561</issn><issn>1943-5533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF9PwjAUxRujiYh-h0Zf9GHYv2z1jSwgJhCJjOembC2OjBXbzQQ_vV1AffLp3pycc-7ND4BbjAYYDfHj_WiZjh_m2QALRiPOKR0ghCgl4gz0frVz0EOJEBHmQ3wJrrzfdibEUA-o6WHtygJOrNu1lWpKW0Nr4Jv2ZVXquoFzW7RV66GxDqb2PeifGi7b9capIiy2rDxcNcH8VdYbmC4ymGnfwIVyaqcb7fw1uDCq8vrmNPtgNRln6TSavT6_pKNZpCiNm4jlCeNJzAzHyBTYKEUZVQIZzhKmBU3MmieUGCEwiYUgcS6o5hgjpCinLKF9cHfs3Tv70YYf5Na2rg4nJWEEEx6KSHA9HV25s947beTelTvlDhIj2SGVskMq55ns8MkOnzwhDeHhMax8rv_qf5L_B78BHhV5qg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ghorbani, Behnam</creator><creator>Arulrajah, Arul</creator><creator>Narsilio, Guillermo</creator><creator>Horpibulsuk, Suksun</creator><creator>Bo, Myint Win</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8651-4402</orcidid><orcidid>https://orcid.org/0000-0003-1512-9803</orcidid><orcidid>https://orcid.org/0000-0003-1965-8972</orcidid></search><sort><creationdate>20200901</creationdate><title>Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters</title><author>Ghorbani, Behnam ; Arulrajah, Arul ; Narsilio, Guillermo ; Horpibulsuk, Suksun ; Bo, Myint Win</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-4c845874f510fd1faa343a90f5484e938fb5832f991279927c93e51100a353483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Building materials</topic><topic>Civil engineering</topic><topic>Cohesion</topic><topic>Cone penetration tests</topic><topic>Heuristic methods</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Penetration</topic><topic>Prediction models</topic><topic>Soils</topic><topic>Technical Note</topic><topic>Technical Notes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbani, Behnam</creatorcontrib><creatorcontrib>Arulrajah, Arul</creatorcontrib><creatorcontrib>Narsilio, Guillermo</creatorcontrib><creatorcontrib>Horpibulsuk, Suksun</creatorcontrib><creatorcontrib>Bo, Myint Win</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbani, Behnam</au><au>Arulrajah, Arul</au><au>Narsilio, Guillermo</au><au>Horpibulsuk, Suksun</au><au>Bo, Myint Win</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters</atitle><jtitle>Journal of materials in civil engineering</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>0899-1561</issn><eissn>1943-5533</eissn><abstract>AbstractIn the present study, a novel model is introduced for the prediction of a resilient modulus (MR) of cohesive subgrade soils considering cone-penetration test parameters to establish correlations with the MR. A reliable previously published database composed of 124 datasets was utilized for the development of the proposed model, which incorporates both cone penetration test (CPT) parameters and laboratory indices. In order to generate the predictive model, a hybrid algorithm combining a firefly algorithm with a multilayer perceptron neural network (FA-MLP) is proposed. The FA algorithm is employed in the MLP network structure to adjust the weights and the bias of the network and, hence, improve the overall performance of the network. The proposed FA-MLP formulation was found to have the capacity to predict, satisfactorily, the MR of cohesive subgrade soils using the results of the CPT test.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)MT.1943-5533.0003329</doi><orcidid>https://orcid.org/0000-0002-8651-4402</orcidid><orcidid>https://orcid.org/0000-0003-1512-9803</orcidid><orcidid>https://orcid.org/0000-0003-1965-8972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-1561
ispartof Journal of materials in civil engineering, 2020-09, Vol.32 (9)
issn 0899-1561
1943-5533
language eng
recordid cdi_proquest_journals_2421255482
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Algorithms
Building materials
Civil engineering
Cohesion
Cone penetration tests
Heuristic methods
Mathematical models
Multilayer perceptrons
Neural networks
Parameters
Penetration
Prediction models
Soils
Technical Note
Technical Notes
title Hybrid Formulation of Resilient Modulus for Cohesive Subgrade Soils Utilizing CPT Test Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Formulation%20of%20Resilient%20Modulus%20for%20Cohesive%20Subgrade%20Soils%20Utilizing%20CPT%20Test%20Parameters&rft.jtitle=Journal%20of%20materials%20in%20civil%20engineering&rft.au=Ghorbani,%20Behnam&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=0899-1561&rft.eissn=1943-5533&rft_id=info:doi/10.1061/(ASCE)MT.1943-5533.0003329&rft_dat=%3Cproquest_cross%3E2421255482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421255482&rft_id=info:pmid/&rfr_iscdi=true