An Integrated Decision Making Approach for Adaptive Shared Control of Mobility Assistance Robots
Mobility assistance robots provide support to elderly or patients during walking. The design of a safe and intuitive assistance behavior is one of the major challenges in this context. We present an integrated approach for the context-specific, on-line adaptation of the assistance level of a rollato...
Gespeichert in:
Veröffentlicht in: | International journal of social robotics 2016-11, Vol.8 (5), p.631-648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobility assistance robots provide support to elderly or patients during walking. The design of a safe and intuitive assistance behavior is one of the major challenges in this context. We present an integrated approach for the context-specific, on-line adaptation of the assistance level of a rollator-type mobility assistance robot by gain-scheduling of low-level robot control parameters. A human-inspired decision-making model, the drift-diffusion Model, is introduced as the key principle to gain-schedule parameters and with this to adapt the provided robot assistance in order to achieve a human-like assistive behavior. The mobility assistance robot is designed to provide (a) cognitive assistance to help the user following a desired path towards a predefined destination as well as (b) sensorial assistance to avoid collisions with obstacles while allowing for an intentional approach of them. Further, the robot observes the user long-term performance and fatigue to adapt the overall level of (c) physical assistance provided. For each type of assistance a decision-making problem is formulated that affects different low-level control parameters. The effectiveness of the proposed approach is demonstrated in technical validation experiments. Moreover, the proposed approach is evaluated in a user study with 35 elderly persons. Obtained results indicate that the proposed gain-scheduling technique incorporating ideas of human decision-making models shows a general high potential for the application in adaptive shared control of mobility assistance robots. |
---|---|
ISSN: | 1875-4791 1875-4805 |
DOI: | 10.1007/s12369-016-0353-z |