Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors

We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-06, Vol.100 (4), p.3295-3306
Hauptverfasser: Weng, Yue, Unni, Vishnu R., Sujith, R. I., Saha, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3306
container_issue 4
container_start_page 3295
container_title Nonlinear dynamics
container_volume 100
creator Weng, Yue
Unni, Vishnu R.
Sujith, R. I.
Saha, Abhishek
description We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.
doi_str_mv 10.1007/s11071-020-05706-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421245688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421245688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j1L8goIHFXoL2WzSpu4mNUmR-utdW8GbpxmG530HHoQuKVxTAHGTKAVBCTAgUAqoCD9CE1oKTljVLI7RBBpWEGhgcYrOUloDAGdQT5B52Xm9isG7L5Vd8NhGNZjPEN-xDREPoTO980uco_LJ7YkccF6ZOASlwzZlp7HzKavW9S7vxh33anBeRazD0I5AiOkcnVjVJ3PxO6fo7f7udfZI5s8PT7PbOdGcNpnQWjQVg7IqeAlUKCs6zqkYL2Drrigs07oVjEFXKVYbahgvqQZhWy0KWtd8iq4OvZsYPrYmZbkO2-jHl5IVjLKirPYUO1A6hpSisXIT3aDiTlKQPzrlQaccdcq9TsnHED-E0gj7pYl_1f-kvgEq-XmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421245688</pqid></control><display><type>article</type><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</creator><creatorcontrib>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</creatorcontrib><description>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05706-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Combustion chambers ; Control ; Dynamical Systems ; Engineering ; Heat release rate ; Limit cycle oscillations ; Mechanical Engineering ; Original Paper ; Oscillators ; Perturbation methods ; Pressure oscillations ; Quasi-Periodic Oscillations ; Synchronism ; Thermoacoustics ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-06, Vol.100 (4), p.3295-3306</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</citedby><cites>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</cites><orcidid>0000-0002-8830-9779 ; 0000-0001-9619-6623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05706-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05706-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Weng, Yue</creatorcontrib><creatorcontrib>Unni, Vishnu R.</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><creatorcontrib>Saha, Abhishek</creatorcontrib><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Combustion chambers</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heat release rate</subject><subject>Limit cycle oscillations</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Oscillators</subject><subject>Perturbation methods</subject><subject>Pressure oscillations</subject><subject>Quasi-Periodic Oscillations</subject><subject>Synchronism</subject><subject>Thermoacoustics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j1L8goIHFXoL2WzSpu4mNUmR-utdW8GbpxmG530HHoQuKVxTAHGTKAVBCTAgUAqoCD9CE1oKTljVLI7RBBpWEGhgcYrOUloDAGdQT5B52Xm9isG7L5Vd8NhGNZjPEN-xDREPoTO980uco_LJ7YkccF6ZOASlwzZlp7HzKavW9S7vxh33anBeRazD0I5AiOkcnVjVJ3PxO6fo7f7udfZI5s8PT7PbOdGcNpnQWjQVg7IqeAlUKCs6zqkYL2Drrigs07oVjEFXKVYbahgvqQZhWy0KWtd8iq4OvZsYPrYmZbkO2-jHl5IVjLKirPYUO1A6hpSisXIT3aDiTlKQPzrlQaccdcq9TsnHED-E0gj7pYl_1f-kvgEq-XmN</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Weng, Yue</creator><creator>Unni, Vishnu R.</creator><creator>Sujith, R. I.</creator><creator>Saha, Abhishek</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8830-9779</orcidid><orcidid>https://orcid.org/0000-0001-9619-6623</orcidid></search><sort><creationdate>20200601</creationdate><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><author>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Combustion chambers</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heat release rate</topic><topic>Limit cycle oscillations</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Oscillators</topic><topic>Perturbation methods</topic><topic>Pressure oscillations</topic><topic>Quasi-Periodic Oscillations</topic><topic>Synchronism</topic><topic>Thermoacoustics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Yue</creatorcontrib><creatorcontrib>Unni, Vishnu R.</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><creatorcontrib>Saha, Abhishek</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Yue</au><au>Unni, Vishnu R.</au><au>Sujith, R. I.</au><au>Saha, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>100</volume><issue>4</issue><spage>3295</spage><epage>3306</epage><pages>3295-3306</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05706-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8830-9779</orcidid><orcidid>https://orcid.org/0000-0001-9619-6623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-06, Vol.100 (4), p.3295-3306
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2421245688
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Bifurcations
Classical Mechanics
Combustion chambers
Control
Dynamical Systems
Engineering
Heat release rate
Limit cycle oscillations
Mechanical Engineering
Original Paper
Oscillators
Perturbation methods
Pressure oscillations
Quasi-Periodic Oscillations
Synchronism
Thermoacoustics
Vibration
title Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20framework%20for%20modeling%20transition%20to%20thermoacoustic%20instability%20in%20laminar%20combustors&rft.jtitle=Nonlinear%20dynamics&rft.au=Weng,%20Yue&rft.date=2020-06-01&rft.volume=100&rft.issue=4&rft.spage=3295&rft.epage=3306&rft.pages=3295-3306&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05706-3&rft_dat=%3Cproquest_cross%3E2421245688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421245688&rft_id=info:pmid/&rfr_iscdi=true