Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors
We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-06, Vol.100 (4), p.3295-3306 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3306 |
---|---|
container_issue | 4 |
container_start_page | 3295 |
container_title | Nonlinear dynamics |
container_volume | 100 |
creator | Weng, Yue Unni, Vishnu R. Sujith, R. I. Saha, Abhishek |
description | We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings. |
doi_str_mv | 10.1007/s11071-020-05706-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421245688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421245688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j1L8goIHFXoL2WzSpu4mNUmR-utdW8GbpxmG530HHoQuKVxTAHGTKAVBCTAgUAqoCD9CE1oKTljVLI7RBBpWEGhgcYrOUloDAGdQT5B52Xm9isG7L5Vd8NhGNZjPEN-xDREPoTO980uco_LJ7YkccF6ZOASlwzZlp7HzKavW9S7vxh33anBeRazD0I5AiOkcnVjVJ3PxO6fo7f7udfZI5s8PT7PbOdGcNpnQWjQVg7IqeAlUKCs6zqkYL2Drrigs07oVjEFXKVYbahgvqQZhWy0KWtd8iq4OvZsYPrYmZbkO2-jHl5IVjLKirPYUO1A6hpSisXIT3aDiTlKQPzrlQaccdcq9TsnHED-E0gj7pYl_1f-kvgEq-XmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421245688</pqid></control><display><type>article</type><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</creator><creatorcontrib>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</creatorcontrib><description>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05706-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Bifurcations ; Classical Mechanics ; Combustion chambers ; Control ; Dynamical Systems ; Engineering ; Heat release rate ; Limit cycle oscillations ; Mechanical Engineering ; Original Paper ; Oscillators ; Perturbation methods ; Pressure oscillations ; Quasi-Periodic Oscillations ; Synchronism ; Thermoacoustics ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-06, Vol.100 (4), p.3295-3306</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</citedby><cites>FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</cites><orcidid>0000-0002-8830-9779 ; 0000-0001-9619-6623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05706-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05706-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Weng, Yue</creatorcontrib><creatorcontrib>Unni, Vishnu R.</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><creatorcontrib>Saha, Abhishek</creatorcontrib><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</description><subject>Automotive Engineering</subject><subject>Bifurcations</subject><subject>Classical Mechanics</subject><subject>Combustion chambers</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Heat release rate</subject><subject>Limit cycle oscillations</subject><subject>Mechanical Engineering</subject><subject>Original Paper</subject><subject>Oscillators</subject><subject>Perturbation methods</subject><subject>Pressure oscillations</subject><subject>Quasi-Periodic Oscillations</subject><subject>Synchronism</subject><subject>Thermoacoustics</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS7G52j1L8goIHFXoL2WzSpu4mNUmR-utdW8GbpxmG530HHoQuKVxTAHGTKAVBCTAgUAqoCD9CE1oKTljVLI7RBBpWEGhgcYrOUloDAGdQT5B52Xm9isG7L5Vd8NhGNZjPEN-xDREPoTO980uco_LJ7YkccF6ZOASlwzZlp7HzKavW9S7vxh33anBeRazD0I5AiOkcnVjVJ3PxO6fo7f7udfZI5s8PT7PbOdGcNpnQWjQVg7IqeAlUKCs6zqkYL2Drrigs07oVjEFXKVYbahgvqQZhWy0KWtd8iq4OvZsYPrYmZbkO2-jHl5IVjLKirPYUO1A6hpSisXIT3aDiTlKQPzrlQaccdcq9TsnHED-E0gj7pYl_1f-kvgEq-XmN</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Weng, Yue</creator><creator>Unni, Vishnu R.</creator><creator>Sujith, R. I.</creator><creator>Saha, Abhishek</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8830-9779</orcidid><orcidid>https://orcid.org/0000-0001-9619-6623</orcidid></search><sort><creationdate>20200601</creationdate><title>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</title><author>Weng, Yue ; Unni, Vishnu R. ; Sujith, R. I. ; Saha, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-187962056435017af7d33172050f8d44f2ccb7220d6a28e1e2351c07fbc741883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Bifurcations</topic><topic>Classical Mechanics</topic><topic>Combustion chambers</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Heat release rate</topic><topic>Limit cycle oscillations</topic><topic>Mechanical Engineering</topic><topic>Original Paper</topic><topic>Oscillators</topic><topic>Perturbation methods</topic><topic>Pressure oscillations</topic><topic>Quasi-Periodic Oscillations</topic><topic>Synchronism</topic><topic>Thermoacoustics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Yue</creatorcontrib><creatorcontrib>Unni, Vishnu R.</creatorcontrib><creatorcontrib>Sujith, R. I.</creatorcontrib><creatorcontrib>Saha, Abhishek</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Yue</au><au>Unni, Vishnu R.</au><au>Sujith, R. I.</au><au>Saha, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>100</volume><issue>4</issue><spage>3295</spage><epage>3306</epage><pages>3295-3306</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>We, herein, present a new model based on the framework of synchronization to describe a thermoacoustic system and capture the multiple bifurcations that such a system undergoes. Instead of applying flame describing function to depict the unsteady heat release rate as the flame’s response to acoustic perturbation, the new model considers the acoustic field and the unsteady heat release rate as a pair of nonlinearly coupled damped oscillators. By varying the coupling strength, multiple dynamical behaviors, including limit cycle oscillation, quasi-periodic oscillation, strange nonchaos, and chaos, can be captured. Furthermore, the model was able to qualitatively replicate the different behaviors of a laminar thermoacoustic system observed in experiments by Kabiraj et al. (Chaos (Woodbury, N Y) 22:023129, 2012). By analyzing the temporal variation of phase difference between heat release rate oscillations and pressure oscillations under different dynamical states, we show that the characteristics of the dynamical states depend on the nature of synchronization between the two signals, which is consistent with previous experimental findings.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05706-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8830-9779</orcidid><orcidid>https://orcid.org/0000-0001-9619-6623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-06, Vol.100 (4), p.3295-3306 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2421245688 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Bifurcations Classical Mechanics Combustion chambers Control Dynamical Systems Engineering Heat release rate Limit cycle oscillations Mechanical Engineering Original Paper Oscillators Perturbation methods Pressure oscillations Quasi-Periodic Oscillations Synchronism Thermoacoustics Vibration |
title | Synchronization framework for modeling transition to thermoacoustic instability in laminar combustors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20framework%20for%20modeling%20transition%20to%20thermoacoustic%20instability%20in%20laminar%20combustors&rft.jtitle=Nonlinear%20dynamics&rft.au=Weng,%20Yue&rft.date=2020-06-01&rft.volume=100&rft.issue=4&rft.spage=3295&rft.epage=3306&rft.pages=3295-3306&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05706-3&rft_dat=%3Cproquest_cross%3E2421245688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421245688&rft_id=info:pmid/&rfr_iscdi=true |