Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester

A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2020-06, Vol.100 (4), p.3029-3042
Hauptverfasser: Mousavi Lajimi, S. Amir, Friswell, Michael I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3042
container_issue 4
container_start_page 3029
container_title Nonlinear dynamics
container_volume 100
creator Mousavi Lajimi, S. Amir
Friswell, Michael I.
description A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.
doi_str_mv 10.1007/s11071-020-05690-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421245336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421245336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4Crg1uhNMn9ZSv2FghuF7kKS3tSp00lNRqGufAff0Cdx6gjuXN2zOOdczkfIMYczDlCeJ86h5AwEMMgLBazaISOel5KJQs12yQiUyBgomO2Tg5SWACAFVCOyvMRUL9pTalrTbFKdtmpOPeLcGvdMXWi7GBoaPDW0DW1Tt2giXdUuBrau8T1gg66Ltfv6-BxkSJ3pakexxbjY0CcT3zB1GA_JnjdNwqPfOyaP11cPk1s2vb-5m1xMmZNcdcxyW3LwEgzkufVKmMIoiVYZDsaCMyrL0KkqU5lX0lteVYXHvLSF9eBQyTE5GXrXMby89q_1MrzGfl7SIhNcZLmURe8Sg6sfklJEr9exXpm40Rz0lqkemOqeqf5hqqs-JIdQ6s3tAuNf9T-pb5VcfPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421245336</pqid></control><display><type>article</type><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</creator><creatorcontrib>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</creatorcontrib><description>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05690-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Cantilever beams ; Classical Mechanics ; Control ; Control theory ; Damping ; Dynamical Systems ; Energy harvesting ; Engineering ; Feedback control ; Feedback loops ; Mathematical analysis ; Mechanical Engineering ; Mechanical systems ; Nonlinear control ; Nonlinear feedback ; Numerical methods ; Original Paper ; Piezoelectricity ; Substrates ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-06, Vol.100 (4), p.3029-3042</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</citedby><cites>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05690-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05690-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mousavi Lajimi, S. Amir</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</description><subject>Automotive Engineering</subject><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Feedback loops</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Mechanical systems</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Piezoelectricity</subject><subject>Substrates</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4Crg1uhNMn9ZSv2FghuF7kKS3tSp00lNRqGufAff0Cdx6gjuXN2zOOdczkfIMYczDlCeJ86h5AwEMMgLBazaISOel5KJQs12yQiUyBgomO2Tg5SWACAFVCOyvMRUL9pTalrTbFKdtmpOPeLcGvdMXWi7GBoaPDW0DW1Tt2giXdUuBrau8T1gg66Ltfv6-BxkSJ3pakexxbjY0CcT3zB1GA_JnjdNwqPfOyaP11cPk1s2vb-5m1xMmZNcdcxyW3LwEgzkufVKmMIoiVYZDsaCMyrL0KkqU5lX0lteVYXHvLSF9eBQyTE5GXrXMby89q_1MrzGfl7SIhNcZLmURe8Sg6sfklJEr9exXpm40Rz0lqkemOqeqf5hqqs-JIdQ6s3tAuNf9T-pb5VcfPE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mousavi Lajimi, S. Amir</creator><creator>Friswell, Michael I.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><author>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Feedback loops</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Mechanical systems</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Piezoelectricity</topic><topic>Substrates</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi Lajimi, S. Amir</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousavi Lajimi, S. Amir</au><au>Friswell, Michael I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>100</volume><issue>4</issue><spage>3029</spage><epage>3042</epage><pages>3029-3042</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05690-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2020-06, Vol.100 (4), p.3029-3042
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2421245336
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Cantilever beams
Classical Mechanics
Control
Control theory
Damping
Dynamical Systems
Energy harvesting
Engineering
Feedback control
Feedback loops
Mathematical analysis
Mechanical Engineering
Mechanical systems
Nonlinear control
Nonlinear feedback
Numerical methods
Original Paper
Piezoelectricity
Substrates
Vibration
title Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20analysis,%20and%20feedback%20control%20of%20a%20nonlinear%20micro-piezoelectric%E2%80%93electrostatic%20energy%20harvester&rft.jtitle=Nonlinear%20dynamics&rft.au=Mousavi%20Lajimi,%20S.%20Amir&rft.date=2020-06-01&rft.volume=100&rft.issue=4&rft.spage=3029&rft.epage=3042&rft.pages=3029-3042&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05690-8&rft_dat=%3Cproquest_cross%3E2421245336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421245336&rft_id=info:pmid/&rfr_iscdi=true