Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester
A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonli...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2020-06, Vol.100 (4), p.3029-3042 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3042 |
---|---|
container_issue | 4 |
container_start_page | 3029 |
container_title | Nonlinear dynamics |
container_volume | 100 |
creator | Mousavi Lajimi, S. Amir Friswell, Michael I. |
description | A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design. |
doi_str_mv | 10.1007/s11071-020-05690-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421245336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421245336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4Crg1uhNMn9ZSv2FghuF7kKS3tSp00lNRqGufAff0Cdx6gjuXN2zOOdczkfIMYczDlCeJ86h5AwEMMgLBazaISOel5KJQs12yQiUyBgomO2Tg5SWACAFVCOyvMRUL9pTalrTbFKdtmpOPeLcGvdMXWi7GBoaPDW0DW1Tt2giXdUuBrau8T1gg66Ltfv6-BxkSJ3pakexxbjY0CcT3zB1GA_JnjdNwqPfOyaP11cPk1s2vb-5m1xMmZNcdcxyW3LwEgzkufVKmMIoiVYZDsaCMyrL0KkqU5lX0lteVYXHvLSF9eBQyTE5GXrXMby89q_1MrzGfl7SIhNcZLmURe8Sg6sfklJEr9exXpm40Rz0lqkemOqeqf5hqqs-JIdQ6s3tAuNf9T-pb5VcfPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421245336</pqid></control><display><type>article</type><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</creator><creatorcontrib>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</creatorcontrib><description>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-020-05690-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Cantilever beams ; Classical Mechanics ; Control ; Control theory ; Damping ; Dynamical Systems ; Energy harvesting ; Engineering ; Feedback control ; Feedback loops ; Mathematical analysis ; Mechanical Engineering ; Mechanical systems ; Nonlinear control ; Nonlinear feedback ; Numerical methods ; Original Paper ; Piezoelectricity ; Substrates ; Vibration</subject><ispartof>Nonlinear dynamics, 2020-06, Vol.100 (4), p.3029-3042</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</citedby><cites>FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-020-05690-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-020-05690-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mousavi Lajimi, S. Amir</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</description><subject>Automotive Engineering</subject><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control theory</subject><subject>Damping</subject><subject>Dynamical Systems</subject><subject>Energy harvesting</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Feedback loops</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Mechanical systems</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Piezoelectricity</subject><subject>Substrates</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4Crg1uhNMn9ZSv2FghuF7kKS3tSp00lNRqGufAff0Cdx6gjuXN2zOOdczkfIMYczDlCeJ86h5AwEMMgLBazaISOel5KJQs12yQiUyBgomO2Tg5SWACAFVCOyvMRUL9pTalrTbFKdtmpOPeLcGvdMXWi7GBoaPDW0DW1Tt2giXdUuBrau8T1gg66Ltfv6-BxkSJ3pakexxbjY0CcT3zB1GA_JnjdNwqPfOyaP11cPk1s2vb-5m1xMmZNcdcxyW3LwEgzkufVKmMIoiVYZDsaCMyrL0KkqU5lX0lteVYXHvLSF9eBQyTE5GXrXMby89q_1MrzGfl7SIhNcZLmURe8Sg6sfklJEr9exXpm40Rz0lqkemOqeqf5hqqs-JIdQ6s3tAuNf9T-pb5VcfPE</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mousavi Lajimi, S. Amir</creator><creator>Friswell, Michael I.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</title><author>Mousavi Lajimi, S. Amir ; Friswell, Michael I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1b710f30a055bf92a6a93eb9a10ab0ca944ec98494f93fb1886fe57b6bf0ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automotive Engineering</topic><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control theory</topic><topic>Damping</topic><topic>Dynamical Systems</topic><topic>Energy harvesting</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Feedback loops</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Mechanical systems</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Piezoelectricity</topic><topic>Substrates</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousavi Lajimi, S. Amir</creatorcontrib><creatorcontrib>Friswell, Michael I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousavi Lajimi, S. Amir</au><au>Friswell, Michael I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>100</volume><issue>4</issue><spage>3029</spage><epage>3042</epage><pages>3029-3042</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>A nonlinear micro-piezoelectric–electrostatic energy harvester is designed and studied using mathematical and computational methods. The system consists of a cantilever beam substrate, a bimorph piezoelectric transducer, a pair of tuning parallel-plate capacitors, and a tip–mass. The governing nonlinear mathematical model of the electro-mechanical system including nonlinear material and quadratic air-damping is derived for the series connection of the piezoelectric layers. The static and modal frequency curves are computed to optimize the operating point, and a parametric study is performed using numerical methods. A bias DC voltage is used to adapt the system to resonate with respect to the frequency of external vibration. Furthermore, to improve the bandwidth and performance of the harvester (and achieve a high level of harvested power without sacrificing the bandwidth), a nonlinear feedback loop is integrated into the design.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-020-05690-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2020-06, Vol.100 (4), p.3029-3042 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2421245336 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Cantilever beams Classical Mechanics Control Control theory Damping Dynamical Systems Energy harvesting Engineering Feedback control Feedback loops Mathematical analysis Mechanical Engineering Mechanical systems Nonlinear control Nonlinear feedback Numerical methods Original Paper Piezoelectricity Substrates Vibration |
title | Design, analysis, and feedback control of a nonlinear micro-piezoelectric–electrostatic energy harvester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20analysis,%20and%20feedback%20control%20of%20a%20nonlinear%20micro-piezoelectric%E2%80%93electrostatic%20energy%20harvester&rft.jtitle=Nonlinear%20dynamics&rft.au=Mousavi%20Lajimi,%20S.%20Amir&rft.date=2020-06-01&rft.volume=100&rft.issue=4&rft.spage=3029&rft.epage=3042&rft.pages=3029-3042&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-020-05690-8&rft_dat=%3Cproquest_cross%3E2421245336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421245336&rft_id=info:pmid/&rfr_iscdi=true |