Higher rank hyperbolicity

The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2020-08, Vol.221 (2), p.597-664
Hauptverfasser: Kleiner, Bruce, Lang, Urs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 664
container_issue 2
container_start_page 597
container_title Inventiones mathematicae
container_volume 221
creator Kleiner, Bruce
Lang, Urs
description The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank  n ≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n -cycles of r n  volume growth; prime examples include n -cycles associated with n -quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT ( 0 ) spaces of asymptotic rank  n extends to a class of ( n - 1 ) -cycles in the Tits boundaries.
doi_str_mv 10.1007/s00222-020-00955-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421243782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421243782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6eff741a33532090fe2b88521ee86220d7ac4358bb71ff70f595008bfc7e1b13</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqHwA2CqxGy4O8d1PKIKWqRKLDBbcbDblJIEO1WVf49LkNiYbnjfe3f3GLtBuEMAdR8BiIgDAQfQUvLDCcswF8SRtDplGRwlrRHO2UWMW4AkKsrY9bJeb1yYhrL5mG6GzgXb7uqq7odLdubLXXRXv3PC3p4eX-dLvnpZPM8fVrwSqHtezpz3KsdSCCkINHhHtigkoXPFjAjeVVnlQhbWKkwkeKklQGF9pRxaFBN2O-Z2of3au9ibbbsPTVppKCekdGdBiaKRqkIbY3DedKH-LMNgEMyxAjNWYNKf5qcCc0gmMZpigpu1C3_R_7i-AVj2XNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421243782</pqid></control><display><type>article</type><title>Higher rank hyperbolicity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kleiner, Bruce ; Lang, Urs</creator><creatorcontrib>Kleiner, Bruce ; Lang, Urs</creatorcontrib><description>The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank  n ≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n -cycles of r n  volume growth; prime examples include n -cycles associated with n -quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT ( 0 ) spaces of asymptotic rank  n extends to a class of ( n - 1 ) -cycles in the Tits boundaries.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-020-00955-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Boundaries ; Cones ; Geodesic lines ; Geodesy ; Mathematics ; Mathematics and Statistics ; Metric space ; Topology ; Visibility</subject><ispartof>Inventiones mathematicae, 2020-08, Vol.221 (2), p.597-664</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6eff741a33532090fe2b88521ee86220d7ac4358bb71ff70f595008bfc7e1b13</citedby><cites>FETCH-LOGICAL-c319t-a6eff741a33532090fe2b88521ee86220d7ac4358bb71ff70f595008bfc7e1b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-020-00955-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-020-00955-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kleiner, Bruce</creatorcontrib><creatorcontrib>Lang, Urs</creatorcontrib><title>Higher rank hyperbolicity</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank  n ≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n -cycles of r n  volume growth; prime examples include n -cycles associated with n -quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT ( 0 ) spaces of asymptotic rank  n extends to a class of ( n - 1 ) -cycles in the Tits boundaries.</description><subject>Asymptotic properties</subject><subject>Boundaries</subject><subject>Cones</subject><subject>Geodesic lines</subject><subject>Geodesy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Topology</subject><subject>Visibility</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EEqHwA2CqxGy4O8d1PKIKWqRKLDBbcbDblJIEO1WVf49LkNiYbnjfe3f3GLtBuEMAdR8BiIgDAQfQUvLDCcswF8SRtDplGRwlrRHO2UWMW4AkKsrY9bJeb1yYhrL5mG6GzgXb7uqq7odLdubLXXRXv3PC3p4eX-dLvnpZPM8fVrwSqHtezpz3KsdSCCkINHhHtigkoXPFjAjeVVnlQhbWKkwkeKklQGF9pRxaFBN2O-Z2of3au9ibbbsPTVppKCekdGdBiaKRqkIbY3DedKH-LMNgEMyxAjNWYNKf5qcCc0gmMZpigpu1C3_R_7i-AVj2XNU</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Kleiner, Bruce</creator><creator>Lang, Urs</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200801</creationdate><title>Higher rank hyperbolicity</title><author>Kleiner, Bruce ; Lang, Urs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6eff741a33532090fe2b88521ee86220d7ac4358bb71ff70f595008bfc7e1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Boundaries</topic><topic>Cones</topic><topic>Geodesic lines</topic><topic>Geodesy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Topology</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleiner, Bruce</creatorcontrib><creatorcontrib>Lang, Urs</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleiner, Bruce</au><au>Lang, Urs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher rank hyperbolicity</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>221</volume><issue>2</issue><spage>597</spage><epage>664</epage><pages>597-664</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank  n ≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n -cycles of r n  volume growth; prime examples include n -cycles associated with n -quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT ( 0 ) spaces of asymptotic rank  n extends to a class of ( n - 1 ) -cycles in the Tits boundaries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-020-00955-w</doi><tpages>68</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2020-08, Vol.221 (2), p.597-664
issn 0020-9910
1432-1297
language eng
recordid cdi_proquest_journals_2421243782
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Boundaries
Cones
Geodesic lines
Geodesy
Mathematics
Mathematics and Statistics
Metric space
Topology
Visibility
title Higher rank hyperbolicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20rank%20hyperbolicity&rft.jtitle=Inventiones%20mathematicae&rft.au=Kleiner,%20Bruce&rft.date=2020-08-01&rft.volume=221&rft.issue=2&rft.spage=597&rft.epage=664&rft.pages=597-664&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-020-00955-w&rft_dat=%3Cproquest_cross%3E2421243782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421243782&rft_id=info:pmid/&rfr_iscdi=true