Higher rank hyperbolicity

The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2020-08, Vol.221 (2), p.597-664
Hauptverfasser: Kleiner, Bruce, Lang, Urs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank  n ≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n -cycles of r n  volume growth; prime examples include n -cycles associated with n -quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT ( 0 ) spaces of asymptotic rank  n extends to a class of ( n - 1 ) -cycles in the Tits boundaries.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-020-00955-w