Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor

Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Luminescence (Chichester, England) England), 2020-08, Vol.35 (5), p.636-650
Hauptverfasser: Shivaramu, N.J., Coetsee, E., Swart, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 5
container_start_page 636
container_title Luminescence (Chichester, England)
container_volume 35
creator Shivaramu, N.J.
Coetsee, E.
Swart, H.C.
description Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.
doi_str_mv 10.1002/bio.3768
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2421236119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421236119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1518-87da9d14edca695f71d1c6e684fe903c8a3594b057d539aa2275ffde532f8fb33</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKvgTwj4WLbmsslufNPipVAoSH3wKaSbxKbsJmvSRfrvzVLxYTgD882Z4QBwi9EcI0Tuty7MacXrMzDBjJCiIiU9_-8puwRXKe0RQpxzMQH2PbQGBgtXbgZd8AkGDw87A9MQrWoM7ELsd6ENX0eovB5HsQvt0DlvUmN8JvoYehMPzqTR55Os6cOmozPolQ95NeWK1-DCqjaZmz-dgo-X583irVitX5eLx1XRY4broq60EhqXRjeKC2YrrHHDDa9LawSiTa0oE-UWsUozKpQipGLWasMosbXdUjoFdyff_NT3YNJB7sMQfT4pSUkwoRxjkaniRP241hxlH12n4lFiJMcIZY5QjhHKp-V6VPoLEVZl_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421236119</pqid></control><display><type>article</type><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><source>Wiley Online Library All Journals</source><creator>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</creator><creatorcontrib>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</creatorcontrib><description>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.3768</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analytical methods ; Crystal defects ; Crystallites ; Crystals ; Defects ; Deformation ; Dosimeters ; Dosimetry ; Electron microscopy ; Field emission microscopy ; Fourier transforms ; Glow curves ; Infrared spectroscopy ; Irradiation ; Light diffraction ; Lithium ions ; Morphology ; Nanophosphors ; Oxygen ; Recombination ; Scanning electron microscopy ; Thermoluminescence ; Ultraviolet radiation ; Vibrations ; Yttrium oxide</subject><ispartof>Luminescence (Chichester, England), 2020-08, Vol.35 (5), p.636-650</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5233-0130 ; 0000-0001-6498-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.3768$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.3768$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shivaramu, N.J.</creatorcontrib><creatorcontrib>Coetsee, E.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><title>Luminescence (Chichester, England)</title><description>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</description><subject>Analytical methods</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Defects</subject><subject>Deformation</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electron microscopy</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Glow curves</subject><subject>Infrared spectroscopy</subject><subject>Irradiation</subject><subject>Light diffraction</subject><subject>Lithium ions</subject><subject>Morphology</subject><subject>Nanophosphors</subject><subject>Oxygen</subject><subject>Recombination</subject><subject>Scanning electron microscopy</subject><subject>Thermoluminescence</subject><subject>Ultraviolet radiation</subject><subject>Vibrations</subject><subject>Yttrium oxide</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKvgTwj4WLbmsslufNPipVAoSH3wKaSbxKbsJmvSRfrvzVLxYTgD882Z4QBwi9EcI0Tuty7MacXrMzDBjJCiIiU9_-8puwRXKe0RQpxzMQH2PbQGBgtXbgZd8AkGDw87A9MQrWoM7ELsd6ENX0eovB5HsQvt0DlvUmN8JvoYehMPzqTR55Os6cOmozPolQ95NeWK1-DCqjaZmz-dgo-X583irVitX5eLx1XRY4broq60EhqXRjeKC2YrrHHDDa9LawSiTa0oE-UWsUozKpQipGLWasMosbXdUjoFdyff_NT3YNJB7sMQfT4pSUkwoRxjkaniRP241hxlH12n4lFiJMcIZY5QjhHKp-V6VPoLEVZl_g</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Shivaramu, N.J.</creator><creator>Coetsee, E.</creator><creator>Swart, H.C.</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5233-0130</orcidid><orcidid>https://orcid.org/0000-0001-6498-4481</orcidid></search><sort><creationdate>202008</creationdate><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><author>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1518-87da9d14edca695f71d1c6e684fe903c8a3594b057d539aa2275ffde532f8fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Defects</topic><topic>Deformation</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electron microscopy</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Glow curves</topic><topic>Infrared spectroscopy</topic><topic>Irradiation</topic><topic>Light diffraction</topic><topic>Lithium ions</topic><topic>Morphology</topic><topic>Nanophosphors</topic><topic>Oxygen</topic><topic>Recombination</topic><topic>Scanning electron microscopy</topic><topic>Thermoluminescence</topic><topic>Ultraviolet radiation</topic><topic>Vibrations</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shivaramu, N.J.</creatorcontrib><creatorcontrib>Coetsee, E.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivaramu, N.J.</au><au>Coetsee, E.</au><au>Swart, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</atitle><jtitle>Luminescence (Chichester, England)</jtitle><date>2020-08</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>636</spage><epage>650</epage><pages>636-650</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/bio.3768</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5233-0130</orcidid><orcidid>https://orcid.org/0000-0001-6498-4481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1522-7235
ispartof Luminescence (Chichester, England), 2020-08, Vol.35 (5), p.636-650
issn 1522-7235
1522-7243
language eng
recordid cdi_proquest_journals_2421236119
source Wiley Online Library All Journals
subjects Analytical methods
Crystal defects
Crystallites
Crystals
Defects
Deformation
Dosimeters
Dosimetry
Electron microscopy
Field emission microscopy
Fourier transforms
Glow curves
Infrared spectroscopy
Irradiation
Light diffraction
Lithium ions
Morphology
Nanophosphors
Oxygen
Recombination
Scanning electron microscopy
Thermoluminescence
Ultraviolet radiation
Vibrations
Yttrium oxide
title Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Li+%20ions%20on%20the%20surface%20morphology%20and%20thermoluminescence%20properties%20of%20Y2O3:Tm3+%20nanophosphor&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Shivaramu,%20N.J.&rft.date=2020-08&rft.volume=35&rft.issue=5&rft.spage=636&rft.epage=650&rft.pages=636-650&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.3768&rft_dat=%3Cproquest_wiley%3E2421236119%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421236119&rft_id=info:pmid/&rfr_iscdi=true