Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor
Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot...
Gespeichert in:
Veröffentlicht in: | Luminescence (Chichester, England) England), 2020-08, Vol.35 (5), p.636-650 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 650 |
---|---|
container_issue | 5 |
container_start_page | 636 |
container_title | Luminescence (Chichester, England) |
container_volume | 35 |
creator | Shivaramu, N.J. Coetsee, E. Swart, H.C. |
description | Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation. |
doi_str_mv | 10.1002/bio.3768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2421236119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421236119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1518-87da9d14edca695f71d1c6e684fe903c8a3594b057d539aa2275ffde532f8fb33</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhYMoWKvgTwj4WLbmsslufNPipVAoSH3wKaSbxKbsJmvSRfrvzVLxYTgD882Z4QBwi9EcI0Tuty7MacXrMzDBjJCiIiU9_-8puwRXKe0RQpxzMQH2PbQGBgtXbgZd8AkGDw87A9MQrWoM7ELsd6ENX0eovB5HsQvt0DlvUmN8JvoYehMPzqTR55Os6cOmozPolQ95NeWK1-DCqjaZmz-dgo-X583irVitX5eLx1XRY4broq60EhqXRjeKC2YrrHHDDa9LawSiTa0oE-UWsUozKpQipGLWasMosbXdUjoFdyff_NT3YNJB7sMQfT4pSUkwoRxjkaniRP241hxlH12n4lFiJMcIZY5QjhHKp-V6VPoLEVZl_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421236119</pqid></control><display><type>article</type><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><source>Wiley Online Library All Journals</source><creator>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</creator><creatorcontrib>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</creatorcontrib><description>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</description><identifier>ISSN: 1522-7235</identifier><identifier>EISSN: 1522-7243</identifier><identifier>DOI: 10.1002/bio.3768</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analytical methods ; Crystal defects ; Crystallites ; Crystals ; Defects ; Deformation ; Dosimeters ; Dosimetry ; Electron microscopy ; Field emission microscopy ; Fourier transforms ; Glow curves ; Infrared spectroscopy ; Irradiation ; Light diffraction ; Lithium ions ; Morphology ; Nanophosphors ; Oxygen ; Recombination ; Scanning electron microscopy ; Thermoluminescence ; Ultraviolet radiation ; Vibrations ; Yttrium oxide</subject><ispartof>Luminescence (Chichester, England), 2020-08, Vol.35 (5), p.636-650</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5233-0130 ; 0000-0001-6498-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbio.3768$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbio.3768$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Shivaramu, N.J.</creatorcontrib><creatorcontrib>Coetsee, E.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><title>Luminescence (Chichester, England)</title><description>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</description><subject>Analytical methods</subject><subject>Crystal defects</subject><subject>Crystallites</subject><subject>Crystals</subject><subject>Defects</subject><subject>Deformation</subject><subject>Dosimeters</subject><subject>Dosimetry</subject><subject>Electron microscopy</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Glow curves</subject><subject>Infrared spectroscopy</subject><subject>Irradiation</subject><subject>Light diffraction</subject><subject>Lithium ions</subject><subject>Morphology</subject><subject>Nanophosphors</subject><subject>Oxygen</subject><subject>Recombination</subject><subject>Scanning electron microscopy</subject><subject>Thermoluminescence</subject><subject>Ultraviolet radiation</subject><subject>Vibrations</subject><subject>Yttrium oxide</subject><issn>1522-7235</issn><issn>1522-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLAzEQhYMoWKvgTwj4WLbmsslufNPipVAoSH3wKaSbxKbsJmvSRfrvzVLxYTgD882Z4QBwi9EcI0Tuty7MacXrMzDBjJCiIiU9_-8puwRXKe0RQpxzMQH2PbQGBgtXbgZd8AkGDw87A9MQrWoM7ELsd6ENX0eovB5HsQvt0DlvUmN8JvoYehMPzqTR55Os6cOmozPolQ95NeWK1-DCqjaZmz-dgo-X583irVitX5eLx1XRY4broq60EhqXRjeKC2YrrHHDDa9LawSiTa0oE-UWsUozKpQipGLWasMosbXdUjoFdyff_NT3YNJB7sMQfT4pSUkwoRxjkaniRP241hxlH12n4lFiJMcIZY5QjhHKp-V6VPoLEVZl_g</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Shivaramu, N.J.</creator><creator>Coetsee, E.</creator><creator>Swart, H.C.</creator><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H95</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5233-0130</orcidid><orcidid>https://orcid.org/0000-0001-6498-4481</orcidid></search><sort><creationdate>202008</creationdate><title>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</title><author>Shivaramu, N.J. ; Coetsee, E. ; Swart, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1518-87da9d14edca695f71d1c6e684fe903c8a3594b057d539aa2275ffde532f8fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical methods</topic><topic>Crystal defects</topic><topic>Crystallites</topic><topic>Crystals</topic><topic>Defects</topic><topic>Deformation</topic><topic>Dosimeters</topic><topic>Dosimetry</topic><topic>Electron microscopy</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Glow curves</topic><topic>Infrared spectroscopy</topic><topic>Irradiation</topic><topic>Light diffraction</topic><topic>Lithium ions</topic><topic>Morphology</topic><topic>Nanophosphors</topic><topic>Oxygen</topic><topic>Recombination</topic><topic>Scanning electron microscopy</topic><topic>Thermoluminescence</topic><topic>Ultraviolet radiation</topic><topic>Vibrations</topic><topic>Yttrium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shivaramu, N.J.</creatorcontrib><creatorcontrib>Coetsee, E.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Luminescence (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shivaramu, N.J.</au><au>Coetsee, E.</au><au>Swart, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor</atitle><jtitle>Luminescence (Chichester, England)</jtitle><date>2020-08</date><risdate>2020</risdate><volume>35</volume><issue>5</issue><spage>636</spage><epage>650</epage><pages>636-650</pages><issn>1522-7235</issn><eissn>1522-7243</eissn><abstract>Y2O3:Tm3+ and Li+ co‐doped Y2O3:Tm3+ nanopowders were synthesized using the solution combustion method for possible application in ultraviolet (UV) light dosimetry. X‐ray diffraction revealed the crystallite sizes to be in the range 21–44 nm and 30–121 nm using the Scherrer equation and the W‐H plot relationship, respectively. Field emission scanning electron microscopy confirmed that, after co‐doping with 4 mol% concentration of Li+, the particles were spherical in nature with an average size of ~30 nm. Fourier transformed infrared spectroscopy results showed bands at wavenumbers of 556, 1499, 1704, 2342, 2358, 2973, 3433, and 3610 cm−1 that corresponded to the stretching and bending vibrations of Y–O, C=O and O–H. Thermoluminescence (TL) glow peaks for Y2O3:Tm3+ nanophosphors observed at 399 and 590 K were attributed to oxygen defects caused using UV irradiation. These oxygen defects firstly resulted in an increased prominent peak TL intensity for up to 270 min of irradiation and then a decrease. This was attributed to the presence of oxygen defect clusters that caused a reduction in recombination centres. The Li+ co‐doped sample showed peaks at 356, 430, and 583 K and its intensity sublinearly increased up to 90 min and then thereafter decreased. The TL trapping parameters were calculated using computerized glow curve deconvolution methods. The Li+ co‐doped sample exhibited less fading and high trap density under the UV radiation.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/bio.3768</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5233-0130</orcidid><orcidid>https://orcid.org/0000-0001-6498-4481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1522-7235 |
ispartof | Luminescence (Chichester, England), 2020-08, Vol.35 (5), p.636-650 |
issn | 1522-7235 1522-7243 |
language | eng |
recordid | cdi_proquest_journals_2421236119 |
source | Wiley Online Library All Journals |
subjects | Analytical methods Crystal defects Crystallites Crystals Defects Deformation Dosimeters Dosimetry Electron microscopy Field emission microscopy Fourier transforms Glow curves Infrared spectroscopy Irradiation Light diffraction Lithium ions Morphology Nanophosphors Oxygen Recombination Scanning electron microscopy Thermoluminescence Ultraviolet radiation Vibrations Yttrium oxide |
title | Role of Li+ ions on the surface morphology and thermoluminescence properties of Y2O3:Tm3+ nanophosphor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Li+%20ions%20on%20the%20surface%20morphology%20and%20thermoluminescence%20properties%20of%20Y2O3:Tm3+%20nanophosphor&rft.jtitle=Luminescence%20(Chichester,%20England)&rft.au=Shivaramu,%20N.J.&rft.date=2020-08&rft.volume=35&rft.issue=5&rft.spage=636&rft.epage=650&rft.pages=636-650&rft.issn=1522-7235&rft.eissn=1522-7243&rft_id=info:doi/10.1002/bio.3768&rft_dat=%3Cproquest_wiley%3E2421236119%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421236119&rft_id=info:pmid/&rfr_iscdi=true |