Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation

Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2020-05, Vol.14 (3), p.632-638
Hauptverfasser: Korshunov, L. G., Chernenko, N. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 638
container_issue 3
container_start_page 632
container_title Surface investigation, x-ray, synchrotron and neutron techniques
container_volume 14
creator Korshunov, L. G.
Chernenko, N. L.
description Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe 3 O 4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.
doi_str_mv 10.1134/S1027451020030301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2421151132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421151132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b7220bdddaaf630df3cd0a649bfeb4ea68b1db7b6066a2271950b93fe628ceeb3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQXUTBWv0B3gKeV5PsbrZ7LKVqodTD1vOSj0mb2m5qkgX7Q_y_ZtuCB5GBmSHvvXnkJck9wY-EZPlTTTAt8yJ2jLNY5CIZkBGp0hJX-WXcI5z2-HVy4_0G46LMCjZIvuvgOhk6x7do6XjrtXU7HoxtPeKtim9G2K1dGRkJU61BBo9Mi8IaUN05zSWgOT-AQ1ajcecDtCYYiSZrZ3eQLoz8gC2qA8Q-6yEeQCFxQAveWn_2Nu3qaPb2ZdTR-za50nzr4e48h8n783Q5eU3nby-zyXieyoywkIqSUiyUUpxrlmGlM6kwZ3klNIgcOBsJokQpGGaMU1qSqsCiyjQwOpIAIhsmD6e7e2c_O_Ch2djOtdGyoTklpIjZ0sgiJ5Z01nsHutk7s-Pu0BDc9Ok3f9KPGnrS-H3_PXC_l_8X_QCJ-Yn1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421151132</pqid></control><display><type>article</type><title>Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation</title><source>SpringerLink Journals</source><creator>Korshunov, L. G. ; Chernenko, N. L.</creator><creatorcontrib>Korshunov, L. G. ; Chernenko, N. L.</creatorcontrib><description>Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe 3 O 4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.</description><identifier>ISSN: 1027-4510</identifier><identifier>EISSN: 1819-7094</identifier><identifier>DOI: 10.1134/S1027451020030301</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Austenitic stainless steels ; Chemistry and Materials Science ; Deformation effects ; Deformation wear ; Diffusion ; Friction resistance ; Grain boundaries ; Iron oxides ; Martensite ; Materials Science ; Metallography ; Microhardness ; Nanoparticles ; Nickel steels ; Oxidation ; Oxidation resistance ; Oxygen atoms ; Plastic deformation ; Sliding friction ; Surface layers ; Surfaces and Interfaces ; Thin Films ; Tribology ; Wear resistance</subject><ispartof>Surface investigation, x-ray, synchrotron and neutron techniques, 2020-05, Vol.14 (3), p.632-638</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b7220bdddaaf630df3cd0a649bfeb4ea68b1db7b6066a2271950b93fe628ceeb3</citedby><cites>FETCH-LOGICAL-c316t-b7220bdddaaf630df3cd0a649bfeb4ea68b1db7b6066a2271950b93fe628ceeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1027451020030301$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1027451020030301$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Korshunov, L. G.</creatorcontrib><creatorcontrib>Chernenko, N. L.</creatorcontrib><title>Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation</title><title>Surface investigation, x-ray, synchrotron and neutron techniques</title><addtitle>J. Synch. Investig</addtitle><description>Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe 3 O 4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.</description><subject>Austenitic stainless steels</subject><subject>Chemistry and Materials Science</subject><subject>Deformation effects</subject><subject>Deformation wear</subject><subject>Diffusion</subject><subject>Friction resistance</subject><subject>Grain boundaries</subject><subject>Iron oxides</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Metallography</subject><subject>Microhardness</subject><subject>Nanoparticles</subject><subject>Nickel steels</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Oxygen atoms</subject><subject>Plastic deformation</subject><subject>Sliding friction</subject><subject>Surface layers</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Wear resistance</subject><issn>1027-4510</issn><issn>1819-7094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQXUTBWv0B3gKeV5PsbrZ7LKVqodTD1vOSj0mb2m5qkgX7Q_y_ZtuCB5GBmSHvvXnkJck9wY-EZPlTTTAt8yJ2jLNY5CIZkBGp0hJX-WXcI5z2-HVy4_0G46LMCjZIvuvgOhk6x7do6XjrtXU7HoxtPeKtim9G2K1dGRkJU61BBo9Mi8IaUN05zSWgOT-AQ1ajcecDtCYYiSZrZ3eQLoz8gC2qA8Q-6yEeQCFxQAveWn_2Nu3qaPb2ZdTR-za50nzr4e48h8n783Q5eU3nby-zyXieyoywkIqSUiyUUpxrlmGlM6kwZ3klNIgcOBsJokQpGGaMU1qSqsCiyjQwOpIAIhsmD6e7e2c_O_Ch2djOtdGyoTklpIjZ0sgiJ5Z01nsHutk7s-Pu0BDc9Ok3f9KPGnrS-H3_PXC_l_8X_QCJ-Yn1</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Korshunov, L. G.</creator><creator>Chernenko, N. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation</title><author>Korshunov, L. G. ; Chernenko, N. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b7220bdddaaf630df3cd0a649bfeb4ea68b1db7b6066a2271950b93fe628ceeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenitic stainless steels</topic><topic>Chemistry and Materials Science</topic><topic>Deformation effects</topic><topic>Deformation wear</topic><topic>Diffusion</topic><topic>Friction resistance</topic><topic>Grain boundaries</topic><topic>Iron oxides</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Metallography</topic><topic>Microhardness</topic><topic>Nanoparticles</topic><topic>Nickel steels</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Oxygen atoms</topic><topic>Plastic deformation</topic><topic>Sliding friction</topic><topic>Surface layers</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korshunov, L. G.</creatorcontrib><creatorcontrib>Chernenko, N. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korshunov, L. G.</au><au>Chernenko, N. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation</atitle><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle><stitle>J. Synch. Investig</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>632</spage><epage>638</epage><pages>632-638</pages><issn>1027-4510</issn><eissn>1819-7094</eissn><abstract>Metallography, electron microscopy, and X-ray diffraction are used to study the effect of preliminary plastic deformation in the friction-contact zone on the structural transformations and wear resistance of 12Cr19N9T austenitic stainless steel subjected to subsequent oxidation in air at temperatures of 300–800°C for 1 h. Severe deformation under dry sliding friction produces a two-phase (γ + α) nanocrystalline structure in a ~10-μm-thick surface layer of the steel. The microhardness is 5.2 GPa. Subsequent oxidation at 300–500°C causes an additional increase in the microhardness of the deformed surface layer of steel to the value of 7.0 GPa. This is due to the active saturation of austenite and deformation-induced α'-martensite with oxygen atoms, which rapidly diffuse deep into the metal along the grain boundaries. The oxygen concentration in the surface layer and steel wear products reaches 8.5 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ- and α' phases, increasing the strength and wear resistance of the surface of the 12Cr19N9T steel. Oxidation at 550–800°C results in the formation of a large number of Fe 3 O 4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1027451020030301</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1027-4510
ispartof Surface investigation, x-ray, synchrotron and neutron techniques, 2020-05, Vol.14 (3), p.632-638
issn 1027-4510
1819-7094
language eng
recordid cdi_proquest_journals_2421151132
source SpringerLink Journals
subjects Austenitic stainless steels
Chemistry and Materials Science
Deformation effects
Deformation wear
Diffusion
Friction resistance
Grain boundaries
Iron oxides
Martensite
Materials Science
Metallography
Microhardness
Nanoparticles
Nickel steels
Oxidation
Oxidation resistance
Oxygen atoms
Plastic deformation
Sliding friction
Surface layers
Surfaces and Interfaces
Thin Films
Tribology
Wear resistance
title Structural Transformations and Tribological Effects in the Surface Layer of Austenitic Chrome-Nickel Steel Initiated by Nanostructuring and Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Transformations%20and%20Tribological%20Effects%20in%20the%20Surface%20Layer%20of%20Austenitic%20Chrome-Nickel%20Steel%20Initiated%20by%20Nanostructuring%20and%20Oxidation&rft.jtitle=Surface%20investigation,%20x-ray,%20synchrotron%20and%20neutron%20techniques&rft.au=Korshunov,%20L.%20G.&rft.date=2020-05-01&rft.volume=14&rft.issue=3&rft.spage=632&rft.epage=638&rft.pages=632-638&rft.issn=1027-4510&rft.eissn=1819-7094&rft_id=info:doi/10.1134/S1027451020030301&rft_dat=%3Cproquest_cross%3E2421151132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421151132&rft_id=info:pmid/&rfr_iscdi=true